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AN AXISYMMETRIC 

NEAR WAKE ANALYSIS  USING ROTATIONAL 

CHARACTERISTICS  + 

by 

Mauro Pierucci 

Polytechnic  Institute of Brooklyn 

SUMMARY 

The near wake of a  cone in a hypersonic stream  is  analyzed 

by simultaneously solving the inviscid   region and the viscous   shear layer . 

The inviscid  region is solved by the use   of rotational axisymmetric 

characteristics.     It  is assumed that viscosity and heat transfer play an 

important role only within a region bounded  by streamlines  which at the 

trailing edge of the cone are  for the most part in the  subsonic portion 

of the  boundary layer.     This region,   termed the shear  layer,   lies 

between the Dividing Streamline  (or centerline)  and the Basic Streamline. 

The solution to the inviscid  region is   obtained  by  specifying conditions 

along the  characteristic  line  originating at the  shoulder  of the cone,   and 

by specifying the pressure distribution along a  free   surface  (Basic Streamline) 

taken to be the streamline which at the shoulder  of the  cone separates 
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STRATEGIC  TECHNOLOGY  supported by the Advanced Research Projects 
Agency  under Order No.   529,   through the Office  of Naval Research,   and 
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the  supersonic   from  transonic  and   subsonic  portions   of the boundary 

layer.     The pressure distribution along the  Basic  Streamline is   iterated 

until the  mass   flow,   momentum,   and energy in the shear  layer are 

consistent with the location  of the Dividing Streamline  and with the 

initial  conditions  at  the edge of the cone. 

Profiles   for pitot pressure,   static  pressure and  stagnation 

enthalpy are presented and compared with experiments  at different  down- 

stream  locations.    The shape and  strength  of both the  lip and  recompression 

shock are also  shown.     Both  sets   of results  are seen to  be  in very 

good agreement with the experimental resuitö  available. 
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I.    INTRODUCTION 

The hypersonic wake of both blunt and slender bodies has received 

considerable attention within recent years;   an overall review of the 

problem may be found in references 1 and 2.    Many problems associated 

with the far wake have been analyzed so that the interest has now shifted 

to the solution of the near wake. 

Chapman    analyzed the problem of mixing of a uniform stream with 

a semi-infinite stagnant region.    However,   it was not until later that the 

results of this basic mixing study were used to analyze the recirculation 

region and the shear layer behind a blunt-based body.    In the mixing 

process,   a dividing streamline is obtained which separates the fluid 

initially at rest from that initially in motion; this streamline,  when used 

in conjunction with the actual body geometry,  is assumed to divide the 

recirculation from the external flow region in the wake problem.    Denison 
4 

and Baum    later improved this analysis by solving the same problem with 

an initial (Blasiua) boundary layer profile,  which more closely approximates 

the actual flow conditions. 

Few exact solutions have been found to the flow in the entire base 
5 

region; one of these is by Viviand and Berger  ,  which is valid for very 

low free stream Reynolds numbers.    Their solution was obtained by ap- 

plying Oseen' s approximation to the complete equations of motion.    Exact 

solutions for laminar flow at higher Reynolds numbers do not as yet exist. 

Lees and Reeves   have attacked the near wake of a blunt body by the 

use of the integral form of the differential equations,   as it was done by Crocco- 
7 

Lees  ,   and by reverse flow solutions to the Falkner-Skan equation.    The final 
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form of the differential equations is obtained from the x-momentum and 

from the first moment of the x-momentum equation.    It is assumed that 

mixing takes place at constant pressure so that the equations are sim- 

plified into two ordinary differential equations in two unkowns (velocity 

on centerline and displacement thickness).    Once the calculation is 

carried to the rear stagnation point then a new set of ordinary differential 

equations is used (pressure is now allowed to change).    This new set of 

equations is now solved the same way as the previous ones.    It turns out 

that for a given family of solutions there will be only one set of values 

which will enable the calculation to go downstream (past the critical 

point).    For any other values a second stagnation point or zero pressure 

on the centerline is obtained.    The inviscid flow field may be assumed to 

be governed by the Prandtl-Meyer equations. 

Due to the vorticity created by the sudden expansion of the flow at 

the base of a blunt based slender body in hypersonic flow,  the above 
g 

theory cannot be applied to this class of problems.    Reeves and Buss 

have analyzed this problem by using the equations of Lees and Reeves 

for the region downstream of stagnation point while upstream of it the 

Navier-Stokes equations are solved by a double Taylor series expansion 

in the stream function and flow variables about the rear stagnation point. 

A   seventh degree series is used and the coefficients are determined by 

the symmetry conditions along the axis,   the boundary conditons and 

temperature along the base of the body and the Navier-Stokes equations. 

The outer inviscid flow is solved by the method of strearntubes.    This 

method may be applied to two-dimensional or axisymmetric bodies. 
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9 10 Rom    and Rom and Victor     have used a modified form of the 

Crocco-Lees technique and with the help of semi-empirical results have 

been able to correlate experimental results.    Webb,  Golik,   Vogenitz and 

Lees    have also extended the analysis of Crocco and Lees and have ob- 

tained results downstream of the rear stagnation point by applying poly- 

nomials in a two moment (momentum equation) plus one moment (energy 

equation) calculation and also in a three moment plus a two moment 

system.    This system of resulting equations permits more degrees of 

freedom in the choice of the inital profiles. 

All the theories discussed above do not lead to detailed solutions   but 

only give overall characteristics of the flow field (velocity on centerline, 

12 displacement thickness,   momentum thickness etc).    Weiss     and Baum 

13 
and Denison     are the first ones to have analyzed the flow field in detail. 

Weiss'  analysis is limited from the trailing edge to the rear stagnation 

point while Denison and Baum have attacked the problem by starting at the 

rear stagnation point.    From trailing edge to rear stagnation point,  the 

flow is split up in three regions (outer flow,  a shear layer,   recirculation 

region).       The outer flow is solved by the method of characteristics.    The 

shear layer is analyzed by a linear approximation of the boundary layer 

equations (Oseen* s approximation) while the recirculation region is solved 

by the inviscid Navier-Stokes equations in terms of vorticity and stream 

function.   The solution for the recirculation region is obtained by assuming 

a temperature distribution from which a velocity distribution is arrived at, 

which in turn is used to solve the energy equation for a new temperature 

and pressure distribution.    Baum and Denison . ommence thair analysis 

at the rear stagnation point and integrate the equations by an implicit 



difference scheme.    The equations which are considered are the continuity 

equation,   the x-momentum and energy equations in the boundary layer 

form and the y-momentum equation as applicable to an inviscid flow. 

The equations are then integrated in the Von-Mises coordinates.    How- 

ever,   since the resulting equations for the x-derivatives would have a 

singular point at u=a and would be unstable for u<a,  the transverse 

momentum equation for u<a is replaced by the statement that p is not a 

function of the stream function.   (Ihis replacement forces a physically 

non-existent saddle point on the solution).    Now as soon as any family of 

initial profile is picked,  only one profile within a given family may permit 

us to go through the critical point.    Any other profile (as it happens in 

Lees-Reeves theory) will give zero pressure or a second stagnation point 

14 somewhere along the centerline.   As explained by Weinbaum     Baum and 

Denison wrongly feel that if no eigenvalue to the particular family of pro- 

files exist,  or if two eigenvalues exist then the problem either is not posed 

correctly or the steady state solution as obtained from the unsteady equation 

would have to be analyzed. 

Weinbaunn recently has critically examined the differential equa- 

tions (boundary layers) which have been used by previous authors.    He has 

concluded that the critical point obtained by most investigators is only an 

artificial way by which the equations used (boundary layer) manifest them- 

selves as not having a dynamic adjustment at the throat (i. e.,  when 

boundary layer equations are used v at the outer edge of the viscous region 

cannot be arbitrarily specified,  and one has to accept whatever it turns 

out to be).    Not only is the critical point artificial,  but its location may 

be varied at will (within bounds dictated by parameters) by suitably choosing 

* 



different positions for the edge of the viscous region.      The equations  which 

he considers are the same as the ones of Baum and Denison,   except that 

the transverse momentum equation is retained in the subsonic region. 

The point u=a now requires special care dve to the fact that the derivatives 

in the x direction will be in an indeterminate form which may be evaluated 

by l'Hopital' s rule.    With this new set of equations no eigenvalue problem 

is encountered and any arbitrary set of stagnation point profiles will be 

able to pass downstream.    The correct solution will then be obtained when 

the ambient pressure is recovered at the end of strong interaction region. 

15 The Rudman-Rutin     equations are similar to the ones used by Weinbaum 

with the exception that the x derivative of the pressure term has been 

neglected.    This minor difference causes a major breakthrough in the 

solution,  because the singularity at u=a has now disappeared and the 

numerical technique used may be simplified considerably. 

The flow field described above is not amenable to a single solution 

unless the complete Navier-Stokes equations are utilized.    A solution 

can also be obtained by splitting the problem into the following four 

distinct flow regimes:   1) leading to trailing edge of body,  2) expansion 

of fluid at the trailing edge,    3) trailing edge to rear stagnation point 

4)   rear stagnation point to downstream infinity.    For the sake of sim- 

plicity it has to be assumed that no interactions between the different 

regions take place. 

If the flow is assumed to be laminar from the leading to trailing 

edge of the cone,  then the solution can be obtained for either of the two 

conditions.    For large Reynolds numbers the inviscid flow field is solved 

by either the method of characteristics or by solving the inviscid conical 



flow equations.    Once the inviscid field is known then the thin viscous 

layer around the body can be solved by the usual boundary layer techniques. 

For low Reynolds numbers the problem is more complicated because no 

distinct viscous layer,   shock wave and inviscid regions exist and the 

viscous layer (even to a first approximation) cannot be neglected with 

respect to the inviscid region. 

The expansion of the rotational flow at the trailing edge is a prob- 

lem which is now being studied.    This problem is complicated by the up- 

stream influence of the base pressure through the subsonic portion of the 

boundary layer.    This problem has been investigated by Weinbaum     for 

17 18 incompressible flow,  Baum     and Weiss and Nelson     for supersonic 

high Reynolds number flows.    In all the cases mentioned,  no interaction 

between the boundary layer and inviscid flow field is assumed. 

For the analysis to proceed from the trailing edge to the rear 

stagnation point,  the recirculation region,  shear layer and the outer in- 

viscid flow would have to be solved independently remembering that the 

boundary conditons connect the three solutions together (obviously   for 

low densities,  this procedure cannot be adapted because of the interaction 

problems involved).    The recirculation region and the shear layer can 

19 20 best be analyzed by the methods developed by either Weiss     cr Moretti 

Weiss' method while not as detailed as  the approach used by Moretti, 

has the advantage of being soluble within a short period of time.    In both 

cases the inviscid outer flow is solved by the method of characteristics. 

Moretti has numerically solved a modified form (viscosity is retained 

while for simplicity heat transfer is neglected) of the unsteady Navier- 

Stokes equations.    Due to the hyperbolic nature of the equations a Lax- 
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Wendroff technique is used to obtain the solution.    The steady state 

solution is then assumed to be the asymptotic time limit of an unsteady 

flow field.    By using these equations,  both the recirculation and shear 

layer region can be solved.    With slight modifications the equations could 

also be used for low density flows.    However,   the usefulness of this 

method is offset by the enormous time required to obtain a solution (on 

an IBM 7094 the time for an accurate calculation would be of the order of 

several hours.) 

A semi-empirical approach which can be worked out with the aid of 

the method of characteristics and the equations used by Weinbaum and 
21 

Garvine     or the ones originally analyzed by Rudman and Rubin will 

now be outlined.    The main tool to be used in this analysis will be the 

method of characteristics.    Application of the method of characteristics 

to the near wake was first suggested by M.H.  Bloom in a presentation 

at an I.D. A.  Conference    in 1963.    Calculations showing the importance 

of radial  pressure   grauients  and the  thickening  of the shear  region 

(after the expansion of the surface boundary layer)   immediately downstream 

of the shoulder of an axlsymmetrlc body were also shown by Bloom 

and Vagllo-Laurin"  .     The first published  results  of this method applied 
12 29  23 

to the near wake  problem  are  by Weiss,       Weinbaum     '        and  Weiss 

24 and  Weinbaum     .      In  reference 12,   the  base   region of the   flow  over a 

wedge is  treated and anapproximate  solution  is   obtained by  matching the 

free  shear  layer,   recirculation,   and inviscid   flow  regions.     The assumptions 

of both Chapman,   and Denison and Baum  that the  stagnant  (recirculating) 

region is  semi-infinite  is  no longer  necessary and thus  the  effect of finite 

*  The proceedings   oi these  meetings  are  unpublished. 



base diameter is obtained. 

In reference  29 the variation of the entropy within the boundary 

layer was  studied and in reference 23, preliminary analyses for characteristic 

calculations  are initiated.     It is also  shown that for high "inviscid" Mach 

numbers  (M   > 8),   less than half the total free stream  expansion occurs 

in the  centered expansion at the corner .     The remainder  of the expansion 

is produced by the reflected 'vaves.     To show this,   the problems  of 

interaction of a slip stream with a weak expansion wave and also the 

interaction of a shear layer with a wake expansion fan are solved.   In 

reference   24,   preliminary calculations from the characteristics  program are 

presented. 

The present paper  presents  a method which combines the  rotational, 

axisymmetric  characteristics  with a viscous  inner   region,   to determine 

near wake profiles.     Imbedded  shocks  are  considered in the characteristics 

solution.     The surface boundary layer profiles at the separation point provide 

the initial conditions for the characteristics program in the supersonic 

region,   while the  subsonic  part of the boundary  layer  is  taken into account 

by dividing this  portion of the boundary  layer into  strips  and considering 

each strip to be governed by the one-dimensional flow equations including 

viscosity and thermal conductivity.     The heat transfer and shear a :ting on 

each streamtube are  computed  from   the  average  values of temperature and 

velocity in each strip.     Details  of the  recirculating flow region are not 

considered in this analysis.     The present analysis  is  useful to evaluate 

the flow  field with reasonable accuracy to a  few base diameters downstream 

of the  body.     At this  location,   the profiles   could then be  used as  initial 

data to the available far wake analyses. 

8 



II.    INVISCID ROTATIONAL FLOW FIELD 

In order to analyze the near wake (cf.  Fig. la) short of using 

the complete set of fluid mechanical   equations   available (Navier- 

Stokes),   certain simplifying assumptions are made.    For the present 

analysis they are: 

1. A steady state solution is assumed. 

2. No interaction from the subsonic part of the boundary layer 

(this alters the initial profiles and can be readily included if a 

more accurate determination of this effect is known. ) 

3. Expansion of the first streamline (Basic Streamline) takes 

place by means of a Prandtl-Meyer fan (A-B in Fig. lb), 

4. Basic Streamline (originally this streamline has a Mach 

number equal to M, at the trailing edge of cone) is a free 

streamline and its shape is determined by assuming a specified 

pressure distribution along it. 

With the above assumptions,  once all the variables are specified 

along a first family characteristic line emanating from the point of 

boundary layer separation on the cone,  where the Mach number in the 

boundary layer M = M. > 1. 0,  the inviscid flow field may be analyzed by 

the method of rotational axisymmetric characteristics including imbedded 

shocks.    The manner in which the pressure distribution along the basic 

streamline is specified will be described later. 

Au the flow near the shoulder expands,  it will separate from the 

base of the cone and a Basic Streamline (B. S) is formed which will separate 

the inviscid outer flow from the viscous layer which is obtained by expanding 

the subsonic portion of the boundary layer.    As the external streamlines 



progress downstream,  they will reach a point where their velocity will be 

in the direction of the axis.    After this point is reached,  the streamlines 

will again start curving outward and the compression waves formed by their 

divergence will coalesce into a trailing shock which may be weak or strong 

depending on the cone angle and flow conditions. 

The details of the shoulder expansion region are better shown in 

Fig.   (lb).    Note that a lip shock may be formed by the concave curvature 

of the B. S.   It is also noteworthy to mention that in order to solve for the 

entire supersonic region one would have to  reflect the incoming expansion 

waves from the sonic surface.   However,  this is not done due to the 

complexity involved in the determination of the sonic surface which is 

imbedded in the viscous region,  therefore,  a streamline with an initial Mach 

number M1  (Basic Streamline) is used as the reflection surface. 

The problem is mathematically well-defined once all the conditions 

along the initial characteristic line,  the point about which the Prandtl-Meyer 

expansion occurs,  and the subsequent basic streamline,  are specified. 

The analysis may then be subdivided into four separate unit problems: 

1. Evaluation of an interior point (3) once values at (1) 

and (2),  are known (see Fig.  2). 

2. Reflection of a second family characteristic line from a pressure 

surface whose pressure is a given function of x.    (Fig.  i) 

3. Evaluation of conditions at a point which is obtained as a result 

of two characteristic lines of the same family intersecting (Fig.  4). 

4. Extension of a shock wave once conditions at a point behind the 

shock are known (Fig.  5) (i. e.,  how to obtain C once A and B 

are known). 

To solve the first unit problem the following equations are available: 

10 



along, 

cotH 

^   = tan ( 9 + M) (first family characteristic) 

,v      ,0      J8in9sinU       Av        co8|i8in3|i      bS    .^       1     cosli        dH    ,v     „ 
dV " de ■ Ycos(9+H)    dX   +   YRCOS(S+P)    ^   dX _ T«   ^iT5+u) STT dX = 0 

along, 
dY 
g^   =   tan (9-|i) (second family characteristic) 

cotji     ,,,  .   ,a     JsinSsin^    Av.     cosM8in3H    öS      ,    .  1       cosn dH Jv     - 
T"   ^ + d9 - Yco8(6-u)    dX " yRcosie-H)  TU   ^^y    cog{6-M)   STTdx = 0 

along. dY 
35r = tan 9 (streamline) 

(1) 

(2) 

S = const. 

H = const. 

and also 

V                  M 
VL     /M^-2. 

(3) 

(4) 

All the variables may be nondimensionalized as follows: 

h = ---    s 
S-S 

TT 
00 _    V X 

*• Tl*-** 
Y 

the differential equations are then reduced to a form amenable to solution 

by a computer,  and they are 

«a =   (Yi   -V2)+*»K -^gi 
ba   H 

(5a) 

Ya ^a  " Si 

= h. 

S3   -    s3 - 
(sa    - 8!) maAXg 

2     ni &x1  + m3 Axg 

(5b) 

(5c) 

(5d) 

11 



v,  = Ai Vi  + Aa v8   - (eI -ea ) + B1 AXi  + d a  AXa +£l~ll—   [c^n^ ls^ - ^^ AxJ 

93 = 9a  -A,  (V3 ^/jjf - va) 4- d a Ax, + (33-3, ) %*$* ^ ■ (h,  - h. ^ lyniAxl+n,Axs) 

(5f) 

All coefficients are defined in the List of Symbols. 

The equations for the reflection of an expansion line from a pressure 

surface are derived by assuming that the B. S.  passes through a point (I) 

(see Fig. 3 ) and conditions at a point off the streamline (2) are known; the 

continuation of the streamline is desired and this is done by locating point (3). 

A second family characteristic line from 2 to 3 and a streamline from 

I to 3 are used.     The equations available are then: 

*3   = 

Ya = 

ya  - Yi + *i  ei ^ kj 
ei  -b« 

ya er -Yiha - ^ bg fe -x, 
ei  - bfl 

(6a) 

(6b) 

83   =   81 

ha=hl 

a       2 
Ma3  * — r^^j^x)) 

Y 

Va    = 
M3 

V a 2 
Ma3 + — 

Y-' 

(6c) 

(6d) 

(6e) 

93   =   9a +Ai(v,.v,<J|T+d,*1  -ca(s3  -..)-   ^(A^a-) 

where all the functions are evaluated in the above order. 

(6f) 
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In the case of two intersecting characteristic lines of the same 

family (AC and BD   a Fig.  4) a shock is assumed to form at the inter- 

section point E.    By using the values at E_(on line AC) and E  (on line BD), 

the strength of the shock is found.    Since it turns out that the shock is a 

very weak one (i. e., -=2_   < 2-3%),  the line BD is extended by using the 

first family characteristic line in front of AC as the line from which a 

second family is eminated. 

13 
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III.    SHEAR LAYER 

The portion of the boundary layer whose Mach number is subsonic 

before the expansion at the trailing edge cannot be analyzed by the method of 

characteristics since the shear and heat conduction effects may be large in this 

region; in addition,  a portion of this layer remains subsonic even after 

expansion at the corner.     It is therefore analyzed by conserving mass 

momentum,  and energy in individual stream tubes wherein the flow is assumed 

to be one dimensional,  including the effects of shear and heat conduction 

between different stream tubes.     This procedure also determines the pressure 

distribution along the outer most stream tube which is adjacent to the 

characteristic field.      By matching the two regions,   therefore,  the analysis 

can proceed downstream in a consistent manner. 

The subsonic part of the boundary layer is divided into "n" strips and it is 

assumedthat each strip expands inviscidly and adiabatically from p   to p, 

as if it were one dimensional.     As soon as this corner expansion is completed, 

each stream tube is followed by using the one dimensional equations with shear 
25 

and heat transfer as given,  for example,  by Shapiro      (see Fig.  6).     The 

energy,  momentum,   and continuity equations in nondimensional form are 

dh. M p 

■a3r=2TT   TT  TTT   Mi" VlViJ (7) 
i       i*i 

Cf„ dM.3 , dp. .     dh. "T 

i.    dx v - - v ■   »■ ii i yiyi-l 

(1+ (Y-l)M.3)cf 

dÄ. 

dx   _      i 

(1-M.3)dp. , .      dh. *T 
i '   ri     .    / , . Y-l   w a\    1 i   . 

—   +   < * + V- Mi > TT   TE- +  Z.   -  v  .        (9) vp.M.3    dx i ^i        ^i-l J ri    i 
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where Q.   =   K -5—   -~   K. —r^ '—^r 

c        ■   cf    -   c 
IT. 1 i+l 

a av ^V. V. - V.   , 
V3 w» 1 ,11-1. 

°-2- cf.   = ^ -5Y =  ^i TTT   =  ^i ( Y.   -  Y. 
1 11 i-l 

The unknowns in the above equations are A., M., h..      The pressure 

p.(x) is assumed to be known and is equal to the value as given by the 

inviscid characteristic program. 

Zero heat transfer is assumed along the basic streamline and a 

mild stagnation temperature variation is assumed in the recirculation 

region.     Internal diffusion takes place by virtue of lieat transfer and 

shear across the strips.     Since,   for a given pressure distribution   p(x), 

the basic streamline has been obtained from the characteristic program, 

this line is used as a reference line from which the radial dimension oi 

the   n     strips is measured when the "correct" pressure distribution is 

used along the basic streamline. The boundary line of the inner most 

pressure distribution used to determine the characteristic field and the 

location of the basic streamline is therefore iterated on to obtain this 

condition before the analysis proceeds to the next streamwise calculation 

of the matching flow fields.      In this manner,  the dividing streamline and 

the rear stagnation region can be obtained once the base pressure p, 

is specified. 

15 
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IV.    RESULTS 

Few detailed experimental profiles of flow parameters in the near 

wake of blunt based cones are available in the literature.      Most experimental 

papers dealing with this subject present results in terms of variables which 

do not describe the details of the flow field.      For example,  there is a 

significant amount of information available on base pressure,  heat transfer 

to base or rear stagnation point location while detailed measurements of 

the flow field are not presented. 

Two recent papers which present local profiles of pressure,  temperature, 
26 

etc.,  at various downstream stations are by Schmidt and Cresci      and 
27 

Bauer    .     The free stream Mach number,  Reynolds numbers and other 

pertinent test conditions are presented below for the two experiments. 

Table (1)   Experimental Test Conditions 

00 
Öw D Pta> Ttoo Tw ^b 

CO 

X Re oo Ref 

8.0 

3.0 

10° 

12  5 

8" 

1" 

lOOpsi 

8.26psi 

1700OR 

5320R 

5440R 

5320R 

0.40 

0.24 

3.0 

2. 1 

2 x 155 

13 x 105 

19 

20 

The above conditions were used as inputs for the characteristics program. 

In both cases,  the experimental values of the base pressure were used 

in conjunction with the axisymmetric,   rotat tnal program.     Since this 

information can be obtained from empirical correlations (cf.  Ref.   28,  for 

example) for different flow conditions,  no generality is lost by this assumption. 

Once the base pressure is known,  the pressure distribution from the 

base to the rear stagnation point can be determined if the maximum Mach 

number (minimum pressure) is specified.     As explained in the previous 

sections,  the location of the rear stagnation region is obtained by matching 

W 



the viscous shear layer with the inviscid characteristic program.     The 

viscous shear layer from the cone base to the rear stagnation region 

was found to be governed principally by the effect of heat transfer from 

the recirculation region while downstream of the stagnation region,   internal 

shear produced the largest effect.     The temperature of the layer adjacent 

to the shear layer was assumed to be either (i) a constant or (ii) vary from 

the cone surface temperature at x = 0 to the recirculation region temperature 

at the rear stagnation point.      As seen from Fig.   (9-a) the effect due to this 

variation appears to be negligible.      For the Mach eight conditions,   profiles 

at different x stations are obtained and values of pitot pressures,   static 

pressure and stagnation enthalpy are plotted and compared with the experi- 

mental results in Figures (7) through ( 9).      The stagnation enthalpy profiles 

are seen to agree very well,   especially in the region close to the rear 

stagnation point.     The accuracy of the analysis decreases in the downstream 

direction as the region dominated by diffusive effects grows into the flow 

field computed by characteristics,   thereby invalidating the basic assumption 

of an inviscid outer flow.     The pitot pressure profiles are seen to be in 

good agreement up to x/D =3.25.     In contrast to the other two sets of 

profiles,  the static pressure profiles are less accurate close to the rear 

stagnation point.      This is believed to be due to two effects.      First,   it is 

much more difficult to accurately measure static pressure in the recirculation 

and stagnation region due to probe interference,   and second,   the theory is 

able to determine the local pressure distribution at every point downstream 

of rear stagnation point in a self-consistent manner,  while in the rear stagnation 

region the uniqueness of the static pressure distribution is not guaranteed. 

17 



It is also seen that at each x station,  the location of the lip and 

recompression shock can be predicted with good accuracy.    In Fig.   (10) 

one sees the flow field for this case.    The light lines indicate the various 

first family characteristics emanating from the basic streamline (for clarity, 

second family lines are omitted), while the two darker lines show the 

ocation and shape of the lip and recompression shock. 

In Fig.   (11) pitot pressure profiles for the Mach 3. 0 case are presented. 

Due to the few results published by Bauer,  the only variables which were 

compared were the pitot pressure profiles; again comparison between theory 

and experiment is reasonably good and the location of the lip shock is 

predicted within experimental accuracy. 

One may note that the Crocco-Lees type of singular behavior doesn't 

appear in this analysis since the critical region is not analyzed in detail. 

18 
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V.    CONCLUDING REMARKS 

The present analysis of the near wake is able to predict (with 

reasonable accuracy) flow conditions and shock shapes at different locations 

without the necessity of analyzing the recirculation region in detail.    The 

advantage of this is immediately evident in that the problem of the recir- 

culation region is formidable due to the complexity of the differential 

equations which govern the flow and the specification of boundary conditions 

along an undetermined boundarv.    It may therefore be inferred that unless 

one is interested in the recirculation region per se,  the detailed solution 

to this region will not play an extremely important role in the downstream 

flow.    The complete solution of the recirculation region has been replaced 

by the specification of several conditions in this region:    1) the base pres- 

sure (ref.  23),    2) an average temperature of the recirculation region 

(ref.  24),    3) maximum Mach number (minimum pressure) along the center- 

line ( ref.  25).    Since these paranneters empirically have been correlated 

under different flow conditions in the referenced papers,   these conditions 

can be readily obtained. 

The following conclusions may be drawn:    1) stagnation enthalpy 

profiles are relatively insensitive to the shape of the initial profiles and 

to the heat transfer from the recirculation region,    2) while this is also 

true for the inviscid portion of the stagnation and static pressure profiles, 

the shear layer is quite sensitive to these conditions. 

As a result,   further refinements and/or extensions to the present 

work should deal with   I) detailed analysis of the initial expansion of a 

compressible shear layer,    2) analysis of the rear stagnation region,   and 

19 



3)   a better representation of the heat transfer and shear between the shear 

layer and the recirculation region. 

The freedom in inputs of the present theory will allow for calculations 

of near wake of more general shaped bodies (spheres or blunt bodies).    The 

only modification involved would be the alteration of inputs along the character- 

istic line emanating from the separation point. 

20 



*" 

VI.    REFERENCES 

1. Lykoudis,   P. S.,   A Review of Hypersonic Wake Studies.    AIAA 

Journal,  Vol. 4,   No.  4,  pp.   577-590,   April 1966. 

2. Carpenter,   M.S.,   Cooper,   L. G. ,   Glenn,   J.H.,   Schirra,   W. M. , 

Observations of the Near Wake Reentry Phenomena.    Advanced 

Research Projects Agency,  Report No. ARPA TN 64-2,   Feb.  1965. 

3. Chapman,   D. R. ,   Laminar Mixing of a Compressible Fluid,  NACA 

Report No.   985,   1948. 

4. Denison,  M. R.  and Baum,   E.,   Compressible Free Shear Layer With 

Finite Initial Thickness.    AIAA Journal,  Vol.   1,  No.   2,   pp.   342- 

349,   Feb.  1963. 

5. Viviand.H.  and Berger,  S.A.,   Base Flow Problem at Very Low 

Reynolds Numbers in the Oseen Approximation.    University of 

California,  Institute of Engineering Research,  Report No. AS 64-15, 

Sept.  1964. 

6. Reeves,  B. L. and Lees,   L.,  Theory of the Laminar Near Wake of 

Blunt Bodies in Hypersonic Flow.    AIAA Journal Vol.   3,   No.   11, 

pp.   2061-2074,   November 1965. 

7. Crocco,   L.  and Lees,   L.,  A Mixing Theory for the Interaction Between 

Dissipative Flows and Nearby Isentropic Streams.    Journal of Aero. 

Sei.,  Vol. 19,  No.  10,  pp.  649-676,  October 1952. 

8. Reeves,   Barry L.,   Buss,  H. M.,   A Theoretical Model of Laminar 

Hypersonic Near Wakes   Behind Blunt Based Slender Bodies, 

AVCO Space Systems Division,   AVSSD-0422-67 RR December 1967. 

21 



9.    Rom,   J.,   Analysis of the Near Wake Pressure in Supersonic Flow 

Using the Momentum Integral Method.    Technion-Israel Institute 

of Technology,   TAE Report No.   35,   September 1964. 

10. Rom,  J.,  and Victor,   M.,  Base Pressure Behind 2D and Axially 

Symmetric Backward Facing Steps in a Turbulent Supersonic Flow. 

Technion-Israel Institute of Technology,   TAE Report No.   31, 

December 1963. 

11. Webb,   W. H., Golik,  R. J., Vogenitz,   F. W.,  and Lees,  L.,  A 

Multi-Moment Integral Theory for the Laminar Supersonic Near 

Wake.    Proceedings of the 1965 Heat Transfer and Fluid Mechanics 

Institute,  Stanford University Press,  Stanford,   California 1965. 

12. Weiss,   R.,  Near Wake of a Wedge.    AVCO Everett Research 

Laboratory,   Report RR 197,   December 1964. 

13. Baum,   E. and Denison,  M. R.,  Intersecting Supersonic Laminar 

Wake Calculations by a Finite Difference Method.    AI A A Journal 

Vol.  5,  No.  7,  pp.   1224-1230,  July 1967. 

14. Weinbaum,  S.,  Near Wake Uniqueness and a Re-Examination of 

the Throat Concept in Laminar Mixing Theory. AIAA 5th Aero- 

space Sciences Meeting,  New York,   January 23-26,  1967. 

15. Rudman,  S.,   Rubin,   S. G.,  Hypersonic Viscous Flow Over Slender 

Bodies Having Sharp Leading Edges.    Polytechnic Institute of 

Brooklyn,  PIBAL Report No.   1018,  May 1967. 

16. Weinbaum,  S.,   Laminar Incompressible Leading and Trailing Edge 

Flows and the Near Wake Rear Stagnation Point,  General Electric 

R 66 SD 25,  May 1966. 

ZZ 



17. Baum,   E.,  An Interaction Model of a Supersonic Laminar 

Boundary Layer on Sharp and Rounded Facing Steps,  AIAA 

Journal,  Vol.  6,  No.   3,   pp.  440-447,   March 1968. 

18. Weiss,   R. F.,  Nelson W. ,   Upstream Influence of the Base 

Pressure.  AIAA Journal,  Vol.  6,  No.   3,   pp.  466-470, 

March 1968. 

19. Weiss,   R. F. ,  A New Theoretical Solution of the Laminar 

Hypersonic Near Wake,   AIAA Journal, Vol.   5,   No.   12, 

pp.   2142-2148,   December 1967. 

20. Moretti,  G.,   Numerical Studies of Base Flow,   General Applied 

Science Laboratories,   Technical Report No.   584,   March 1966. 

21. Weinbaum,   S.,  Garvine,   R. W.,  An Exact Treatment of the 

Boundary Layer Equations Describing the Two-Dimensional 

Viscous Analog of the One-Dimensional Inviscid Throat. 

AIAA Paper,  No.  68-102.  Preserted at the 6th Aerospace Sciences 

Meeting,  New York.    January 22-24, 1968. 

22. Vaglio-Laurin,  R.,  and Bloom,  M.H.,   Chemical Effects in External 

Hypersonic Flows.    Polytechnic Institute of Brooklyn,   PIBAL 

Report No.  640,  AFOSR 1273, August 1961,  also paper presented 

at the ARS International Hypersonic Conference,  Massachusetts 

Institute of Technology,   Cambridge,  Massachusetts,   August 16-18 

1961: also.  Hypersonic Flow Research,  Academic Press,  New York, 

Vol.   7,  pp.  205-254,   1962. 

23. Weinbaum,  S.,   Entropy Boundary Layer.    AVCO-Everett Research 

Laboratory,   Report No.  RR 207,   January 1964. 

Z3 



24. Weiss,   R. ,   and Weinbaum,   S.,  Hypersonic Boundary Layer Separation 

and the Base Flow Problem.    AVCO-Everett Research Laboratory, 

Report RR 22,   July 1965; also, AIAA Journal,  Vol. 4,  No.  8,  pp.  1321- 

1330,  August 1966. 

25. Shapiro,  A. W.,   Dynamics and Thermodynamics of Compressible Fluid 

Flow.    Ronald Press Company,  New York,   1954. 

26. Schrmdt,   E.,  and Cresci,  R. J.,  An Investigation of Hypersonic Flow 

Around a Slender Cone.     Polytechnic Institute of Brooklyn,   PIBAL 

I Report No. 1031,  AP 66117,  October 1967. 

27. Bauer, A.B.,   Some Experiments in the Near Wake of Cones.  AIAA 

Journal,  Vol.   5,  No.  7,  pp. 1356-1358,   July 1967. 

28. Softley, E. J., and Graber, D. C., An Experimental Study of the 

Pressure and Heat Transfer on the Base of Cones in Hypersonic 

Flow.    AGARD Conference Proceedings,  No. 19,  May 1967. 

29. Weinbaum,  S.,   The Rapid Expansion of a Supersonic Shear Flow. 

AVCO-Everett Research Laboratory,   Report RR 204,   January 1965: 

AIAA Journal,  Vol.  4,  No.  2.  pp.  217-226,   February 1966. 

24 



MHW     ' 

I 
DC 
< 

Z 

u. 
o 

g 
t- 

Q: 
ü 
V) 
UJ 
Q 

< 

u 
z 
UJ 

_J 
Lü 

Q 

O 

O 

UJ 
X 
o 

o 

25 



o 
o 
Lü 
a: 
2 
O 

a: 
S 
UJ 
CO 

o 
CO 

UJ 
Q 

Q 
_l 
UJ 
UL 

O 
.J 
ü_ 

ü_ 
O 

O 

Lü 
X o 
(f) 



. ■ 

j—i 
IO 

^ 
+ 

a> 
«-»» 
z 
ß 
+ <VJ 
^-j- 

^ 
+ 

Q5 
2 
rf 

.•-   1 , 

ÜJ 

O 
h- 

oc 
LÜ 
I- o 
< 

< x o 
Q 
Z 
LU 
h- 
X 
LÜ 

Q 
LU 
(/) 
3 

UJ 
tr 
=) 
Q 
UJ 
O 
O 
OC 
CL 

27 



o 10 

g 'S. 
E r 
D Q) 

§ 1 
5 
I + CM 
Ü ^gt 

X 
i 1 

2 
< z E 1 

i   , 

^1 

I 

ct> I    - 

Q z 
z b o ii 5 
< X 2 

PP
R

O
XI

M
 

A
PP

R
O

 

X 
o 

< o 

IR
ST

 
EC

O
N

 

O 

X 
K m H 

1    1 1 
roV) V) 

CVJ 

UJ 
en 
O 

/ 

ro 

f 
X 

LÜ 
Z 

_J 

/ /, 
5 

/   ''0 f LÜ 
Q: 

/        / /   i z h- 
/     /    / / ? c/) /w / ■t> CVJ 

or LL. 
O 

2 
^ Lü 

i                     n 
7 < z I 
P if) 
II 

T
O
  

E
X

T
E

N
D

 

B
E

R
  

IS
   

M
, 

///   ^ Q 1 
1/    z LÜ   5 

LJI   -' en z 
3 

X 
If             Ixl o 
/      K LU  < 

f- ^ 52 
o < 

CD O  H 

£1 
ro 

i 

28 



I 
llJ 

o 
(/) 
<A 
hi 
OL 
£L 
5 
O o 

Q: o 

c/) 
LÜ 

O 

UJ 
Z 
_l 

< 
UJ 

Ll_ 

o 

LÜ 

3; 

^9 



(  
o 
 1 

1 + 
s 
Z ? 
+J CM 
" 

1 + 
S 
z 

1 1 o 
X 
(/> 

o 
UJ 
CL 

CO 

ÜJ 

X 
LÜ 

in 



o z 
< 0. 
5^ 

+ 

o 

t 
+       7 
"     O 

1 i 1 
a. 

- ^i 

E
N

TU
 

DR
  
 S

 

Ü 

1 

M
E

C
H

A
N

IS
M

   
FO

R
 

M
O

M
 

E
N

E
R

G
Y
  

 D
IF

FU
S

IO
N
 

F(
 

P
R

O
F

IL
E

S
 

2 

UJ 

Z o 

5S Ulg 

cr1 

'\I\'\V^\'\SVV\\\\\S^ 

en 

a: 
UJ 
> 
< 
_i 

cc 
< 
LJ 
X 

o en 

QL fe 
tr 
o o 
CO 

fef 
Q 5 
_l UJ 
< X 
a: o 
UJ C/) z 
UJ ^—» 
o CD 

o 

3J 



Y 
D 

O     EXPERIMENTS    REF. (19) 
  PRESENT   THEORY 

i.e. 

1.0 

.8 

... .   . 

> 

"1 
0 y^ 

f* y .6 

/ 

r 

4 

.2 

^^ 

s ^ 
CHARACT ERISTICS r S r     t 

1 
l-D SIR EAMTUBfcS 

0 -LO 1 

z CO 

6 8 
x I03 

10 12 

FIG. (7)   PITOT   PRESSURE   PROFILE, M   =8.0 

(a)X  -214 
D 

00 

3Z 



■ 
■..;•-■.■ 

.8 

Y_ 
D 

]J 

o 

o 

O        / 

V 

—o  
1 0 

8 

Pt    /Pt     x I03 

2 CO 

10 12 

FIG. (7)   PITOT    PRESSURE   PROFILE,  M   =8.0 

^b)^. = 2 50 
D 

33 



X 
D 

1.2 
^ / 

1.0 

o 
.8 

/ 

.b 

•7 
.4 V 

o 

V ö 
? 

2 d 
-^ ^^" 

^ 
0 I    a 

8 

2 00 
x I03 

10 12 

FIG. (7)   PITOT  PRESSURE    PROFILE, IVI^S.O 

D 

34 



1.2 

1.0 

X 
D 

.8 

.6 

.2 

.4 

O  EXPERIMENTS REF. (19) 
  PRESENT THEORY 

^ 

/ 

/ 

0 

) 

\ 

o 
o 

o— 

o 
o 

CHARACTI ERISTICS 

\ t 
1 

l-D STR 
i 

EAMTUBES 

.8 1.2 1.6 2.0 2.4 

FIG. (8)   STATIC   PRESSURE  PROFILE, M 
(a)X    o|4 

D 

= 8.0 

35 



D 

1.2 

1.0 
^ 

^ 

Q 

^o 

/ 
•O 

/ 

.6 
/ 

O 

.4 6 ) « 

\ 
0 

i 

^— 
o 

■y .2 o 
/ 

o 

0 0 
.4 .8 1.2 1.6 2.0 2.4 

FIG. (8)    STATIC   PRESSURE   PROFILE,   M   =8.0 
00 

(b)^=2.50 

,36 



1.2 

1.0 

.8 

D 

.6 

.4 

.2 

/ 0 

c/ 

O 

O 

O 
II 

.4 .8 12 

P/P 

1.6 2.0 

FIG. (8)    STATIC PRESSURE PROFILE, 1^=8.0 

(OX.325 
D 

37 

2.4 

- 



O      EXPERIMENTS   REF. (19) 

D 

1.2 rntocrM i intwni 

1.0 

O 

.8 o 

.6 

o 

o 

o 

.4 O    fl 

o/ 

2 _CHARACT 
A 

ERISTICS O ^/ 

rr* 0 
l-D  STR EAMTURFS 

1 
.4 .6 .8 1.0 

H/H 
CO 

FIG. (9)    STAGNATION    ENTHALPY    PROFILE, 
Mco - 8.0 

(o)X..«l4 

D 

38 



Y 
D 

1.2 

1.0 

.8 

.4 

.2 

O 

O 

O 

5" 

O 

O   y 

o^^^-— 

o 

0 .2 .4 .6 .8 1.0 

FIG.   (9)   STAGNATION    ENTHALPY     PROFILE, 
M^-8.0 
(b)As2.50 

D 

^9 



1.2 

Y 
D 

1.0 

.8 

.2 

o 

o 

0   | 

o 

o 

o J 

r o 

) 

.2 .4 .6 
H/H 

.8 1.0 
oo 

FIG. (9)   STAGNATION   ENTHALPY    PROFILE, 
Mco-8.0 

D 

40 



,■;' 

(O    x|Q 

O 

O 
o 

9 
U) 

tr 

in 

8 
</) 

O 
GO 

N 
8 

o 
-I 
UJ 

O 
_J 

C2 
LL. 

41 



D 

O  EXPERIMENTS  REF (20) 
  PRESENT THEORY 

.1 .2 .3 

P  /P 
t   t 
'2   'CO 

.4 .5 

FIG. (II) PITOT   PRESSURE    PROFILE,   M^ =3.0 
(a)f0.75 

4^ 



■   .- 

Y 
D 

1.0 

( 

/ 

D 

8 

O/ 

c/ 

/ 

6 

/ 

A 

01 

? •t 

/ 

2 V / 

o 

0 -o 
.1 .2 .3 

P    /P 
1        t 

2        'GO 

.4 .5 

FIG. (II)   PITOT     PRESSURE    PROFILE,  M^ =3.0 

D 43 



Y_ 

D 

1. t. 

1.0 

/ 
.8 / 

/ 

/ 

.6 0/ 

/ 

/ 

0 
■ 

.4 / h i 
o 1 

.2 V 
o ^ 

j> 

0 -o  
.1 .2 .3 .4 .5 

P   /P 

FIG. (II)   PITOT    PRESSURE    PROFILE, 1^=3.0 

^.1.25 

44 



...   V 

APPENDIX A 
■ 

DESCRIPTION OF'CHARACTERISTIC PROGRAM 

The program is capable of analyzing the trailing edge expansion 

and the near wake for any given cone angle,   Mach number,   and free stream 

stagnation conditions.    It consists of 13 different sections; eight of these 

are function subroutines for the different coefficients,   the remaining five 

are MAIN,   CINPUT ( Calculate INPUT ),   CHAR ( CHARacteristic ),   CSHOCK, 

( Cone SHOCK ),   DIVST ( Dividing STreamline ),   subroutines.    A  flowchart 

for each of these is provided by Figs.  A-l to A-5. 

At the start,   the MAIN program directs the computer to the CINPUT 

subroutine.    The function of this subroutine is to evaluate and store in the 

memory of the computer the initial characteristic line and the conditions 

along a streamline which originates from a point where the Mach number is 

equal to M  .    The conditions along this streamline change by means of a 

Prandtl-Meyer expansion procedure.    In order to evaluate the initial first 

family characteristic line,   the ''viscous" part of the line is solved and 

matched with the "inviscid" region.    The inviscid or potential characteristic 

22 line is read in to the computer from Sims'  tables     .    This line is then 

shifted a little upstream and/or downstream until the two lines match to 

the desired degree of accuracy.    To evaluate the viscous part of the 

characteristic line,   the only inputs which are necessary are various values 

of Mach number varying from M    to M .    Once the Mach number is known, 
i e 

the velocity u/u    can be found (all the values at the edge of the boundary 

layer are assumed to be equivalent to the inviscid values on the cone and are 

obtained from Sims'  tables).    Once u/u    is known,   corresponding values of 

x and y,   may be found by using Blasius solutions for a cone or by assuming 
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any desired boundary layer profile.    More features of this and subsequent 

subroutines may be obtained from the flow diagram,  and the program. 

From the CINPUT,  the MAIN program calls the CHAR subroutine which is 

used to evaluate conditions at a third point once the conditions at two other 

points not on the same characteristic are known (i. e. ,   this is just a rotational 

axisymmetric characteristic program where the rotationality comes from 

the boundary layer profile). 

Once all the points along a given expansion line are known,   the shape 

of the shock originating from the tip of the cone may be found; this procedure 

is carried out in the CSHOCK subroutine. 

When the expansion fan is completed the program goes on to the DIVST 

subprogram.    This subroutine evaluates conditions on the dividing stream- 

line by using previous first family characteristic lines that the computer has 

evaluated.    This having been done,  the computer goes back to the CHAR 

program to evaluate the next point on this new first family line. 

After the expansion fan is completed,  it will be seen that characteristic 

lines of the same family will tend to cross each other.    Whenever this 

happens the location of the intersection is found and checked to see whether 

the assumed shock is strong or weak.    If the shock is strong enough,  formation 

of an imbedded shock is postulated,  the necessary values upstream and down- 

stream are evaluated and the program goes on to the next characteristic 

line in the flow.    If it is weak shock (as determined by the As/s criteria) 

evaluation of the characteristic line is continued with a new reference line 

used to evaluate the rest of the points on this line. 

After every characteristic line is completed,  at given values of x, 

M,  p/p    ,  H,       /pt   ,   and y are evaluated so that profiles of these values vs. 

y may be plottell at different downstream locations. 
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MAIN   PROGRAM 

FIG. (A-1)     INVISCID    PROGRAM 
47 
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CALL 
CMPUT 

COMPUTE 
VKLUEt   OF 
FIMT   POMT 
IN    UCN 
EXPANSION 

YT.J 

PftCM.  ON 

/'HEM): MAXN, 
N • FOR NOWI 
V.*,M,«,X,V, 

(WAO: «WKE 
ON 

AXIS   At    A 
FUNCTION  OF 
JL 

•NITE:  u., 
«U.a. % 

WNITf : \ 
OUTPUT   ROW I 
V.«,li.t,X.Y. 
H. < 

INTERPOLATE 
IN EACH ROW 
TO FINOV.M 
t.S.H.WP« 

TO OIVCN X, 

FIRST   TIME 

CALL 
CHAR 

FOR   THIS   tt 
PRECEDING 
ROWS   RETAIN 
ONLY     PNC- 
DCTCRMINED 
NO.   OF   PT1 

00   ON   TO 

NEXT 

PRESSURE 

FUNCTION 
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SUBROUTINE      CINPUT 

■LASIUS   SOL. 
FREE-STREAM 
CONC VM.UC8 

READ' 

OROR LMfM 

J>Ti 

^1 
COMRUTE        > 
AND WRITE: 
VALUES    COOE 
■OUNOARV 
LAttR^ 

^RCAO:  MACH 
NO.   FOR 
■OUNOART 
LAYER  RMNT« 

/^REAO  AND 
COMRUTE : ' 
VALUEt OF . 
MVItCIO FART 
OF   FLO« 

^CONFUTE :U« 
•RITE;   mm 

/otmnnt • 
WRITE: U/l» 
rOR EACH RT. 
M MUNDARV 
uuta 

CONFUTE 

MTERROLATE 
IN  BLAtlUt 
SOLUTION 
TNH.E   TtFWD 
ITS CORRCS 
FONOIN« T) 

CONFUTE 
K.V 

COMPUTE 

MATCH VISCOUS 
«IM   INVISCB 
CHARACTERIST. 
TO Of-SIRfD 
ACCURACY 

RETURN 
TO NAM 

FIG. (A-2)    INVISCID   PROGRAM 
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SUBROUTINE    CHAR 

FUNCTIONS 

TO   COMPUTE 

COEFFICIENTS 

COMPUTE 

X.T. S.M.H 

V, 9 

FIND   VKLUES 
COEFFICIENTS 
AT   THIS POtNl 
THEN «VEMi 
WITH  VALUES 
PREVIOUS 
POINT  

,i   CLOSE 
ENOUGH    TO PRE^. 

CHANGE 
INOICIES. GO 
TO   NEXT 
POINT 

'HAVE WF 
IOSSED 

■ANOTHER  LINE   OF 
sSAME    FAMILY 

CAN 
"SHAPE  OF 

'TIP  SHOCK    K 
sCXTENOEO 

® ® 
» 

eifti. SHOCK   START 
THIS   POINT. 
EVALUATE 
VALUES   IN 
FRONT AHO 
KHINO   IT 

t 

RETURN 
TO   MAIN 

USE    NEW 

« EFERI NCE 

FIG. (A-3)     INVISCID    PROGRAM 
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SUBROUTINE     CSHOCK 

FUNCTIONS   TO 
COMPUTE 
ORIGINAL 
COEFFICIENTS 

/i.,A.B,C,6,F, 
a.b.c 

COMPUTE• 

X, ¥.€,©, 
V,S,H,M 

SECOND 
TIME 

FIRST 
TIME 
ONLY 

FUNCTION   TO 
COMPUTE 
COEFFICIENTS 
AT   NEW 
POINT 

AVERAGE 
COEFFICIENTS 
OF   NEW POINT 
WITH 
ORIGINAL 
COEFFICIENTS 

NEGLECT 

THIS    POINT 

RETURN 
TO  MAIN 

T 

FIG.   (A-4)     INVISCID   PROGRAM 
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F-r 

COMPUTER PROGRAM FOR CHARACTERISTIC CALCULATION 

COMMON   VI 5. 70) , THETA ( 5, 70 ) , AM 5, 70 ) » S(1, 7C ) , X ( 5 , 7C ) »Y ( 5 f 7C ) ♦NL (5 ) 
1   tEPI(5,70),AH(5»73),PM(5,70)tLOC(5),XP(5,70)fXX(5,l50). 
1   GAMfRS,AMI,N,I»J ,M , JAM,ALPtTBET.NP,KA,MAXN.MN,MCtIMfKPT,LFSH, 
lLLtTL,Pi,FMI,YT,IDEL,IRIfD,KKtALfAA,B4,CA,C4,E4tF4tIR,GW,SPtPSI,TSl 

DIMENSION   UGUE(41),ET4(Al),XZ(10) 
DIMENSION   P2X(10).P2PC10) 
kEWINDl 
REWIND2 

READ(5.37C)GAM»RS,AMI,ALP,TBET 
REA0(5,380)    IN 
READ(5,380)    INF 
READ(5.3fcO)   PUfcMl 
READ(5,3A0)IREC,ICEL 
READ(5,52Q)   YT 
READ(5,520j XT 

REA0{5,3B0)JAM 
READ(5,350) LL.TL 
READ(5,380) LN 
^EAD(5,A90) IXZ(K),K=1,LN) 
READ(5,380)LPSH 
READ(bt380) KK 
IF(IN.tQ.l) GO TO 10 
READ(5,380)N 
REA0(5,38Ü)MAXN 

READ(5,390 )(V(1,J),THETA(I,J),AM(1,J),S(l,J),X(l,J),Y(l,J),EPI(l,J 
1 ),AH(1,J)tJ=ltN) 

GO TC 20 
10    CALL CINPLT 

MAXN*N*KK-1 
20    INN=N 

IMAX=MAXN 
DO 30 J=2,N 

3"    PM(1,J)=(Y(1,J)-Y(1,J-1))/(X(1,J)-X(1,J-1)) 
G2=(GAM-l.)/2. 
UN1=1.+G2»AMI««2 
PX=GAM/(GAM-1.) 

AJ    KA=1 
IR = 1 
N-INN 
MAXN-IMAX 
NRED=5 
MC=0 

NP=1 
M=0 
READ(5,A80) AA,BA,C^,DA,EA,FA 
DL=AL/.öl7A5329?5 
TOC=TSI»GW 
SRT=12.«SR 
PSID=PSI/IAA. 
WRITE(6,A:3) AMI,TSI,PSIC 
IF(JAM.EO.l) WRITE(6,A10) DL 
IFUAM.EO.J) WRITE(6fA20) DL 
WRITE(6,A30) SRT,TCC,4A,EM1 

1 = 1 
MN=0 
IM=KK-1 
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5"i 

60 
7«i 

80 

•J.' 

llu 

1 

WRITt(6 
wmT:(ö 

WKITh{6, 
1(I,J>,J= 

WRIT: (6 
WRITECb 
Üü ■}'■' L 

IFlKi(L 
DO 60 L 
IFJX( I 
IF(XZ(L 
CO'MTINU 
f-L=(X( 
FH=(XZ( 
TV=TH5T 
AMV=AM( 
TEK? = 
SV=S( I 
VV=V( 1 
YV=Y( I 
HV=AH{ 
PV=(UN1 
SIG = P 
PT2=(IG 
••(!./{ 
WRITt(6 
WRITfc(2 
CONTINU 
IFCXCI, 
rjut I » = N 

1 = 1 + 1 
IR=IR+l 
IFd.GT 
J = l 

N=h*l 
IF(N.GT, 

I F ( I R . G 
IF»INF. 
IFd.GT 
GM=GAM- 
GP=GA^+ 
TF=THET 
AMF=AM( 
AMK 
CNUL=SC 
-1.) ) 
CNUF = S(; 
(Ar-- (i , 
TKK 
XKK=KK- 
SAT=SCR 
X(I,1)- 
Y(I,1)= 
S( 1,1)* 
AH(1,1) 
EPK 1,1 

,^5J 

47':) 
i,N) 

,51.' 
X = l, 
X) .L 
J = l, 
,LJ) 
X) .L 
E 
I,LJ 
LX)- 
A( I 
I,L 

(1. 
,LJ- 
,LJ- 
»LJ- 
I ,LJ 
/(I. 
V»TE 
AM+l 
G4M- 
,300 
)XZ( 
E 
D.o 

) I« 
(V( I,J} ,THcrA(I,J)fÄ^(I,J),S( I,J) ,X(I,J) ,Y(I,J),AF 

) EPK I,NI) 
) 

LN 
T.X( 1,1)) GO TO 80 
5 3 
.EQ. J. ) GC rn a'1 

T.X( I ,LJ) ) GC TC 70 

)-XZ(LXl )/(Xl I,LJ)-X( I.LJ-D) 
X( I,LJ-1))/(X( I,LJ)-X( I,LJ-1)) 
,LJ-1)»FL+THKTA( I,LJ)»FF 
J-1)»FL+Ay! I,LJ)«FH 
+ AKV««2/5.) 
1)»FL+S( I,LJ)«Fh 
1)»FL*V( I,LJ)«FH 
1)»FL+Y( I,LJ)»FH 
-l)»FL*AH( I,LJ)*FH 
♦ G2«Ar'V«»2))»»PX»EXP(-SV)«FV»«PX 
^P»VV«YV»CCS(TV)/SÜRT(FV) 
. )/2.»AVV*»2/UM)«»PX»( (GAV+l. )/2./(GflK»AfV««2-G2) ) 
1.) )»PV 
) XZ(LX),IR,YV,SIG,AMV,VV,SV,PV,PT2,HV 
LX),IR,YV,SIG,A^V,VV,SV,PV,PT2,HV 

T.XT) CALL EXIT 

. 3) GC TO 2-iJ 

1 

I 

MAXN 
T.KK 
EG.I 
.2) 
1. 
1 *. • 
A(l, 
1,1) 
= SÜ 
U(G 

-(TIG 
I )•♦ 

1 
TIGP 
X( 1, 
Yd, 
SCI, 
= Ah( 
)=cp 

) GO TC 150 
) GC TC 16) 
) GC TC 28j 
GC TO 11J 

1) 

RT( ?./f. w#((:M«»Z«GW/?. + l.)«l (PI/A4 )««(GV/GAK ))-!.)) 
P/G^)«ATAr>o(Sf.RT(GN/r;P«(AyK«*2-l.)))-ATAN(SCRT(A^K««2, 

P/G^)*ATAfUS'JRT(rN/nP«(aM(l ,1)**2-1.)))-ATAN(SCRT 
2.-1.) ) 
»CNL^ + THETAJ 1,1 )-CNlJL 

/GV ) 

I) 
1) 
1) 
1,1) 
1(1,1) 
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AM{Itl)=AKF 
XIK=IR-1 
THCTA( I ,1) = TFMTKK-TF)»XIK/XKK 
CNU = C.NUF + TF-THt:TA( !, I) 
DO   120   KI=l,100 
CNh*SÄT»ATAN(SC«Tl (AW(1    ,1 )««2-l. ) »GN/GP » )-ATAN C SCRT < AM ( I   ,n#«2 

1   -1.)) 
AM(I    ,l)=AM(I    ,1) + 2,#{CNL-CNV.) 
IF(ABS(CNL-CNW).LE..0oC01)   GC   TC   i3C 

12-        CONTINUE 
130        V(I    ,1)=S0RT(AK(I    ,1)*»2/(2./GM+AMI   ,l)«»2)) 
1^0        CALL   CHAR 

GO TO 5t 
150  N=MAXN 

MN = 1 
GO TC lO"! 

160   IF(NRED.EQ.O) GO TC 170 
CALL OIV ST 
IF(N.EQ.l) GC TO '»C 
IF(N.EQ.2) GC TO 270 
GO TO 140 

170   IF(IRED.LE.N) GO TC 180 
IRED=IREC-IDEL 
GO TO 170 

180   lLP=IR-3 
REWIND1 
L = 5 
LB=C 
DO 250 ILC0P=1,ILP 
READ(l)IW»NL(5),L0C(5) 
NUl=NU(5) 
READ(l)(V(5tJ)»THETA(5»J)fAH(5,J),S(5fJ)tX(5,J) ,Y(5, J ) ,EP I (5,J ). 

1 AH(5,J),PM5,J),XP(5,J),J = UNUn 
READ(l)tXX(5,IX).lX«ltlW) 
BACKSPACE1 
BACKSPACE 1 
BACKSPACE1 

190   K=l 
DO 200 J=lf IRECICEL 
V (L,K)=V {L,J) 
THETA(LfK)=THETA(L,J) 
AM (LfK)«AV (itJ) 
S (LfK)=S (L,J) 
X    (L,K)=X    (L,J) 
V (L,K)=Y 1L,J) 
AH (L,K)«AH (L,J) 
EPI  (L,K)=EPI  (L,J) 

20ci   K=K+1 
INEX=IRED+1 
N=NU(L) 
IF(INEX.GT.N) GC TC 22: 
DO 210 J=INEX,N 
V (LfK)=V (L,J) 
THCTA(LtK)=THETA(LiJ) 
AM lLfK)=A^ (L,J) 
S    (L,K)=S    (L.J) 
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il J 

23- 

2 50 

2 6 

27 

2d.3 

29 

30; 

31i 

X 
Y 
AH 
FPI 
K = K+1 
NU(LI 
M = NU( 
DO 23 

DC 7^ 
XX(L, 
IF(L. 
CONTI 
LB = Lb 
L = LB 
IF(L. 
NREO = 
^AXN = 
1=3 
GO TC 
WRITE 
WRITE 
aH(5, 
WRITE 
GO TC 
IF (MC 
IF(NP 

GO TC 
READ! 
l),Ah 
GO TO 
IW=IR 
NUI = N 
WRITE 
WRITE 
AH (1, 
WRIT- 
CO 31 
N = NU( 
DO 3C 
V 
THETA 
AM 
S 
X 
Y 
EPI 
AH 
PM 
XPII, 
LOC( I 
NU(I ) 
IWMW 
DC 31 
XX( I , 
DO 3 2 

{L,K)=X 
(L,K)=Y 
IL,K)=AH 
{L,K)=EPl 

(L,J) 
(L,J) 
(L,J) 
(L,J) 

= K-1 
L) 
0 J=2,N 
J)=(Y(L,J)-Y(L,J-l))/(X(L,J)-X(L.J-l)) 
•J I x = 1 , I w 
IX)=1C.E+10 
EG.5) GC TO 261 
NUE 
♦ I 

LT.3) GC TC 190 
1 
N 

1 
( 1 
(I 
J) 
(1 
2 

.N 
T. 
5 

5, 
( I 

I 
-3 
U( 
(1 
(1 
J) 
(1 
0 
I* 
J 
(I 
(I 
(I 
(I 
(I 
(I 
(I 
(I 
(I 
J) 
) = 
= N 
n 
3 
IX 
u 

en 
)lw 
MVI 
,PVl 
) (x; 
5r 

E.C 
to. 
0 
390) V(I,l)fTHETA(I,l).AM(i,l),S(1,1),X(I,1J,Y(I,l)fEPI(I, 
t 1) 

,NU(5) .LCCC)) 
'(5,J),TFETA(b,J),AM5,J),S(5,J),X(5,J),Y(5,J),EFI(5,J), 
(5,J),XP(5,J)rJ=l,N  ) 
:x(5,ix),ix=l,iw) 

) CALL SHOCK 
1) CALL CHAR 

1) 
) IW, 
MV(1 
,PM(1 
) (XX( 
1 = 1,2 
1) 
J = l,\ 
,J) = 
,J) = 
,3) = 
,J) = 
,J) = 
,J) = 
,J) = 
,J) = 
,J) = 
= XP( I 
LOC( I 
U( 1 + 1 

NUI,LCC(1) 
,J),ThFTA(l,J),AMl,J),S(l,J),X(l,J)fY(l,J),EFI(lfJ), 
,J),XP(1,J),J=1,NUI) 
1,IX), IX = ltIW) 

V    (I+1,J) 
THETA(I+1,J) 
AM 
S 
X 
Y 
EPI 
AH 
PM 
+ 1,J) 
+ 1) 
) 

( I + 1,J) 
( I + 1,J) 
( I + 1,J) 
( I + 1, J ) 
( I + 1,J) 
( I + 1,J) 
iI+1,J) 

IX=1,IW 
)=XX| 1 + 1, IX 
I X = 1 , I ^ 

55 

■ 



rr 

320   XX(3 ,IXJ=0. 
1 = 3 
N=NU(3 ) 
00 330 J=1,N 
V( I,J)=C. 
THETAd, J)=0. 
AH(I,J)»0, 
S(ItJ)«0. 
X(IvJ)«0. 
Y(I,J)=G. 
AH(I,J)=C. 
XP(!tJ)«0. 
PMtl.JJ'G. 

330   EPI(I,J)=C. 
GO TO 90 

3^0   FORMAT(2I5) 
350   FORMAK I3,P13.6) 
36'J   F0RMAT(2E18.8) 
370  FORMAT(5E15,6) 
380  FORMAT(I2) 
390  F0RMAT(4E18.8/AE18.8) 
400   F0RMAT(/////,1X,25HFREE STREAM MACH NUMBER =fF18.8,//,IX,2ehFPE£ 

1STREAM STAGNATION TEMPERATURE = ,F18.8.3X,15HCEGREES RANK INEt//1X, 
I 33HFREi STREAM STAGNATION PRESSURE =, F18.8,3X,3FPSI, /) 

410   F0RMAT(1X,2CHHALF ANGLE OF CCNE =,F18.8,3X ,7HCEGREES, /) 
420   F0RMAT(1X,21FHALF ANGLE OF WEOCE =,Fi8.8, 3X,7HCEGREES, /) 
430   F0RMAT(lXf24HRADIUS OF BASE CF CCNE «,F18.8» 3Xt6HNCFES t//11X,21H 

1TEMPERATURE CF CONE =,F18.8,3X,15HCEGREES RANKINE,//IX,30FFRESSLRE 
1 BASE / PRESSURE INF =,F18.8,//,IX,49HIMTIAL MACH NUMBER CF TRAIL 
IING EDGE STREAMLINE =,F18.8> 

440   FORMATdOOX.lOHEPSILCN = ,£18.8) 
450  F0RMAT{///,124H V THETA h 

1 S X Y 
1H      ) 

46Ü  F0RMAT(///8H   ROW  ,12///) 
47'J  F0RMAT(7E18.8) 
48C   F0RMAT(6E13.6) 
490   FORMAfdOFT.S) 
500   F0RMATt2X,2HX=,F7.3,lX,I2,4X,8E13.4) 
510   FORMAT(///,llX,3HROW,lOX,lHY,llX,3l-SIG,llX,lhM,12X,2l-VV,llX, 

I   2HSV,10X,4HP/PI,9X,7HPT2/PTI,7X,2hHV) 
520 ~Ft3RMAT(El8.8) 

END 
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n 

2J 

SUBROUTINE   CINP 
COWON   V(5,70)i 

1   ,EPI(5t70),AH(5 
I   CAMfR$tA^I,MfIf 

lLLfTL»Pl,£^ltYTf 

ciy:\siCA UCLZI 
eEAD(5,19:)    (FT 
RFADCStZ^EV^, 
REAO(5,2AC)AP 
REAC(5,22C)    IY 
GM=GäV-1, 

GP = (iAy*l. 
XL=SR/SI\(4L) 
PI'l.+1^/2.«AVI 
PE«1.*GK/2.«EME 
Tt: = TSI»TCT/PI 
RE=RCR/PI»»(1./ 
UE = Ar'IS»SCRT(GN 
EU=2.27E-3*TE»« 
REL=RE«UE»XL/eL 
XL=XL/SR 
AJA=JAM 
RR=2.»XL/SQRT({ 
UEü = cKE/AM*SO« 
HRITC(6,2 30) Re 
READ(5,22J) NC 
REAn(5,2AC)(AMt 
READ(5,22C)   NL 
,JI = NC:+I 
J2 = N!L*\C 

REAC(5»210)()((1, 
1   J2) 

DC 1C J=J1,J2 
EPI(l,J)=-. 
V(1,J)=SQRT(GV/ 
AM(1,J)=SGRT(12 
READ(5,2A:) EPI 

VE=SQRT(1./(1.+ 
WRITE(6,291) Gh 
DO   83   J=1,NC 
EPI(I,J)=:. 
V(l,J)=SCRT(1./ 
VEV=(VE/V(1,J)) 
UU=((l.-GW)*SOK 
WRITE(6,2HJ)   ÜL 
IF(IY.EC.l)   GO 

IF(UU.LT.UCUE(1) 
IF(UU.GT.üOUE(A 
DO   20   1*1,Al 
IF(UL,tC.LCLE(I 
IF(UÜ.LT.UOUE(I 
CCNTINUe 
WRITb(6,25C)   LL 
CALL   EXIT 
TA = ETA(i ) 
GO   TO   hi' 

'UT 
THeTA(-3,7:i),AN(5,7'Ji ,S( 5,70), X(5,7C) ,Y( 5,7 C),NL 
i,70),Py(i),70),L0C(5),XP(5,70),XXl5,l5C), 
.J,r,JAM,ALP,TeET,NP,KA,yAXN,MN,yC,IM,NPTfLFSHf 

ICEL,IRcU,KK,/lL,AA,KA,CA,C4,E<.,FA,IR,Ck,SR,cSI, 
<*l) ,FTA(41) 

•A( I ) ,LOUE( I ), 1 = 1, AD 
GW,TST,PbI,^,CPP,CI,AL,SR,TCT,RCR,AVIS 

• ♦2 
# « " 

GV)«PSI/(R«TSI) 
/GP«2.»CPP«TSI) 
1.5/«19fc.6+TE) 

2.*AJA+1. )«^£L) 
T(PI/PE) 
L,Rt,EU,XL,Ut,UEC 

1, J),J=1,NC) 

JSY(1,J),THETA(1,J),S(1,J),AF(1,J),AN(1,J),J = J1, 

GP)«Ayi1,J) 
./Gy*V(l,J)»»2)/(l.-V(l,J)««2)) 
(1,J2) 
2./GK/EN'E««2) ) 

(l.*2./Gf/Ay(l,J)»*2)) 
• •2 
T((l.-GW)*»2+A.*GK«VEV))/(2.«VEV) 

rc   IRO 
)   GC   TO   3r 
I))   GG   TO   31 

))   GO   TO   AC 
) )   GO   TG   5C 
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50    TA-ETA (I-l)METAm-ETA(I-in/(UCUEn)-UCtEn-in»(bL-UCLE( I-1)) 
60    FX«l.-EXP(-TA) 

tXX=l.-EXP(-2.«TA) 
AY    »RR*(GW»PE»TA + PE»I1.-GW)»(TA-CI«EX)-IPE-1.)MTA-2.«CI«EX* 

I CI»»2/2.»EXX)) 
Y(l,J)=«AY«CCS(AL)*1.0 

70    AH(lf J)*GHMl.-Gta)«UU 
THETA(l,J)»AL 
S(l,J»«-2.»GAM/GH»tAL0G(AN{l,J)/E^E)-AL0G(lU    ))+S(l,Jl) 
UX«U(AM(ltJ)) 
AFF=AF 
AF«C0TAN(THETA(1,J)+UX) 
IF(J.EO.l) GC TO 170 
X(ltJ)»X(ltJ-l)*(AF+AFF)/2.»lY(l,J)-Y(lfJ-l)) 

80    CONTINUE 
90    ir(XU,N0).GT.X(ltJ2)) GO TO 160 

DO 100 J=Jl,J2 
IF(X(1VN0).LT.X(1,J)) GO TC 110 

100   CONTINUE 
110  ZK«Y(l.J-l)*(Y(l,J)-Y(l,J-in/(X(l,J)-X(lfJ-l))»CX(lfNC)-X(l,J-in 

BE«Y(lfND) - ZK 
WRITE(6.270) BE 
00 120 J>J1*J2 
Y(ltJ)«YlltJ)»<l.*BE) 

120   X(l,J)=X(l,J)«(l.+eE) 
IF(ABS(BE).GT..03CC005) GC TC 90 
00 130 J«J1»J2 
IF(X(lfJ).GT.X(l,NC)) GO TO 1A0 

130   CONTINUE 
140   L-Jl-1 

DO ISO K>JtJ2 
1*1*1 
X(ltL)>X(l,K) 
Y(l.L)-V(lfK) 
V(l,L)«V(ltK) 
S(l»L)>SUtK) 
AH(lvL)*AH(lfK) 
AM(ltL)>AH(lfK) 
epnitL)«Epni,K) 
THETA(1,U»THETA(1,K) 

150   CONTINUE 
N=ND+J2-J*1 
IF(IY.EQ.O) V4RITE(6,30C) KC 
IFdY.EQ.l) WRITE(6,310) NC 
RETURN 

160   WRITE(6,260) X(1 tNC ) . X ( I, Jl) ,X(1.J2) 
CALL EXIT 

170   X(l,l)»-AY»SIN(AL) 
IFUY.EO.l) Xll,l)=-(UU»»AP».066«SR»EHE»«.824)/REL««.116 
GO TO 80 

18U   Y<lfJ)=ILL»«AP»,066»SR«EKE»«.824)/PEL««.116»C0TAK(AL»-H.C 
GO TO 70 

190   F0RPAT(F6.4tE13.6) 
200   FORMAT (4E18.8) 
210   F0RMAT(3E18.e) 
220   F0RMAT(I2) 
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230 F0«MAT(lHl,lX,AHREL=,E15.8,5hRH0E=,E15.8,AHML£=,E15.ef2HL=,E15.8, 
1 3HUE=,E15.8,6HLE/UI=,£15.8) 

>Aw FOKMATCElB.a) 
2f)0 FORMAK IX.qhL CVER UE t E 18 . 8, 12HCLT GF RANGE) 
260 F0RMAT(1X,15HLAST CAR« PC I NT,E18.8,24hNCT BETWEEN LIGHT PCINTS, 

1 2Ei8.8) 
27u FORMAT(2Xf3t-eE = ,E10..8) 
280     FORMAT (2X,3HUU=»EId.b) 
2 90 FORMAT(/»lXf3HGW=tE18.8,3HVE=,E18.8t//) 
300 F0RMAT(/////,1X,  26HLAVINAR BOUNCARY LAYER  ,!5f16F PCINTS ARE 

1 USED» 
310 F0RMAT(/////,1X,2HHTURBULENT BOUNCARY LAYER  ,15,16^ PCINTS ARE 

1 USED) 
END 

# 



SUBROUTINE CHAR 
COMMON V(5,7C) ,THETA(5,70),AM5,70) ,S(5,70),X(5,70) tY(5,7C),NL(5) 

1 ,EPI(5,7n)f A»-(5,7O),PM(5,70),LOC(5)tXP(5,70) ,XX(5fl5C)t 
1 CAMtRSfAMI,NfI,J,M,JAM,ALP»TBET,KP,KAfNAXN,MN,MC,IK,NPT»LFSH, 
1 LL»TL,PltEMl,YTtI0ELtIREDiKK,AL,AA,B4,C4,D4,E4,F«,lR 

T(XX,YY)=COS{XX)/CCS(YY+XX) 
Z(XX,YY)=COS(XX)/CCS(YY-XX) 
WRITE(6,52C) (XX(1-1,1 2),12 = 1,IR) 
IF(NPT.EC.l) GO TO 14Ü 
Gu=0. 

LIM^N-l+y 
IF(MC.GT.O) LIM=LIK-1 

INTEGERP 
DO 330 J=2,LIM 

10    IF(GC.E0.1..ANC.XP(I,J-l).EQ.O.) GC TC 120 
IF(GO.NE.l.) GO TO 130 
IQ=II 
IF(II,LT.(IR-2)) GC TO ^0 
IF((IR-II).EC.2) IX«! 
IFKIR-m.EC.I) IX = 2 

20    I0=IG-1 
IF(IQ.EG.O) GO TO 400 
IF(XX(I.II).GT.XX(IX«IO)) GO TO 20 
IX=IQ 
II = IX 
IF(II.LT.(IR-2)) GC TO 50 
IF( (IR-n).EC.2) IX=1 
IFdlR-ID.EO.l) IX = 2 

30     PaJ+1 
IF(II.LT.KK) P=P+II-KK 
GO TO HO 

40    IWHE=I 
GO TO 60 

50    IWHE=2 
60    LBACK=0 
70    BACKSPACEl 

BACKSPACE! 
BACKSPACEl 
READ(l) IS,NU(5),L0C(5) 
IF(II.EQ.IS) GO TO 80 
BACKSPACEl 
LBACK=LBACK+1 
GO TO 70 

80    NUI=NU(5) 
READ(1)(V(5,K),THETA(5,K),AM(5,K),S(5,K),X(5tK),Y(5,K)tEPIt5,K)< 

1 AH(5tK),PH{5,K»,XP(5fK)»K«lfKUn        "* 
READ(1)(XX(5,IX),IX«1,IS) 
IFdBACK.EQ.O) GO TO 100 
DO 90LBA=1,LBACK 
READ(l)ITT,Nt'(4)fL0C(4) 
NUI=NU(4) 
READ(l)(V(4,K)fTHETA(4,K)tAH(4,K),S(4fK),X(4,K),Y(4,K),EPI(4,KH 

^ 1 AH(4,K),PM(4,K),XP(4,K),K»l,NUI) 
90    READ(1)(XX(4,IX),IX=1,ITT) 
100   IX=5 

IF(IWHE.EC.l) GO TC 20 
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■    ■ 

12. 

130 

1AU 

150 
160 
170 
180 

190 

20Ü 

210 
220 

230 

GO 
IX = 
11 = 
GO 
P = P 
GO 
IX = 
11 = 
P = J 
L = ü 

WR 
L=L + 

IF( 
IF( 
HG= 
X(I 
Yd 
DEL 
DEL 
XN= 
XM= 

ss=s 
DELH 
XNM= 

DX= 
S3 = 
S(I 
AH( 
51 = 
IF( 
V(I 
♦ DX 
DEL 
♦ SO 
52 = 
THE 
♦ OX 
IF( 
IF( 

AM(I 
IF( 

EPI( 
PM( 
IF( 
IF( 
IF( 
IF( 
UX = 
AX= 
AW = 
DW = 
BX= 
cw= 
cx= 
zw= 
TX = 

TO   30 
I   -1 
IR-1 
TO   170 
+ 1 
TO   1^0 
I   -1 
IR-1 
+ NP-1 

ITE{6,51 
1 
NPT.EQ.l 
L.EQ.l) 
HX-GX 
,j) = mi 
,J)=(GX» 
X=X(I,J) 
Z=X(I,J) 
OELZ»ANX 
DELX«SHA 
( IX   ,P)- 
=AH(IX   , 
SS/(XN+X 
DW«DELX 
S(I«J) 
♦J)=S(I, 
I,J)=AH( 
V(I,J) 
AH(ItJ). 
,J)=(AX* 
+ 5SMCX» 
Z/{AH(I, 
RT(AH(I, 
THETA(I, 
TA(I,J)= 
♦CX*XM*X 
S2.NE.0. 
V(I,J).L 
,J)=SQRT 
ABSUV   ( 
ItJ)=0. 
I,J>=(Y( 
IR.LE.KK 
L.GT.LL) 
AP(I,J). 
L.EQ.l) 
U(Af(I,J 
.5»(AZ+A 
.5MAY + A 
.5»(DY+0 
.5»(BZ*8 
.5»(CY+C 
.5»(CZ+C 
.5MZZ + Z 
.5»(TZ+T 

C)   IR»J«n»P 

)   GC  TC   no 
GO   TO   A50 

♦J-l)-Y(IX,P)+HX»X(IX,P)-GX«X(IfJ-l))/HG 
HX»|X(IX,P)-X(ItJ-liJ4HXfrY(I,J-l)-GX»Y(IX,P))/HG 
-X(IX,P) 
-XII,J-l) 

S(I,J-1) 
P)-AH(I,J-1) 
P) 

J-1)+XNM»XN 
I,J-l)+((DELH/(XN*XK))»XN) 

LT.O.)   AH(I,J)*(AHI-l,J) + AH(I-l,J + l) )/2. 
V(I,J-1)+AW«V(IX,PHTHETA(IX,P)-THETA(I,J-1)-«'BX«0ELZ 
DELX»SMAX-DELZ»ANX»CW)/(XN + XM)+DELH/(2.»CXN+Xfjj^tTX« 
J-l)«V(I,J-l)»«2)-ZW»DELX/{AH(IXfP)«V(IX,P)»*2)))/JAX 
J)/AH(I,J-l))+AW»SQRT(AH(I,J)/AH(IX,P))) 
J) 
THETA{IX,P)+AW»(V(IX,P)-SCRT(AH(I,J)/AH(IX,P))«V(UJ)) 
Nf-ZW«DELX»DELH/(2.»V(IXfP)««2«AHIIXtP)»(XN+XP)) 
.AND.L.EQ.l)   GC   TC   250 
T.0..OR.VlI,J).GT.l.)   GO   TC   390 
(2./{GAM-l.))»SQRT{V(I,J)««2/(l.-V(I,J)«»2)) 
I,J)-Sl)/V   (I,J)).LT.TL)   GC   TC   240 

I,J)-Y(IfJ-l))/(X(I,J)-X(I,J-l)) 
)   GO   TO   220 

GO   TC   A20 
LT.l.)   A^(!,J) = (AN(I-l,J)*A^(I-l,J->l))/2. 
GO   TO   460 
)) 
(LX,V( I,J)) ) 
(IX.Vd, J)) ) 
(JAMtUX»THETA(I,J),Y(I,JM) 
{JAM,UX,THETA(I,J).Y(I,J))) 
(UXtGAf'fRS) ) 
(UX,GAM,RS)) 
(UXfTHETA(I,J))) 
(LXtTHETAd.J) ) ) 
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GX = .5MGZ + TAN(THETA(I,J)+UX) ) 
HX=.5»{HZ+TAN(THETÄ(ItJ)-UX)) 
IFdR.LE.KK.ANC.L.GT.LLi   GO   TO   310 

GO   TO   150 
240        IF(V(I,J).GF.l.)   GC   TO   210 

IF(ABS((THETA(I,J)-S2)/THETA(I,J)).GE .TL .OR.ABS(JS(11J)-S2 )/SU.J 
1   )).GE.TL)   GC   TC   21Ü 

IF(Y(I,J).LT.O..CR.Y(I,J).LT.TBET)   GC   TO  AOO 
250        PM(I,J) = (Y(I,J)-Y(I,J-1))/(X(I,J)-X( I,J-1)) 

IF(L.EQ.l)   GC   TC   260 
IF(IR.LE.KK)   GO   TO   310 
IF(PM(I,J).GT.PM(IX   ,P      ))   GC   TO   260 
GO  TO   310 

260        YPM =   (PM(IfJ)*Y(IX   ,P-1)   -   P^MIX   tP)»YlI,J-U   ♦   PfiltJ)* 
1   PM(IX   ,P)«(X(I,J-1)   -   X(IX   ,P-im/lPMI,J)   -PM(IX   fP)) 

XP(I,J)=X(I,J-1) + ((X(I,J)-X(I,J-1) )/(Y(I,J)-Y(I,J-l» »)«(YFM-YIUJ 
1   -D) 

IF(L.EQ.l)   GC   TC   270 
IF(XP(I,J).LT.X(IX   ,P))   GO   TC   270 
XP(ItJ)«0. 
GO  TO   310 

270        HRITE(6,480)IR,J,YPM 
L0C(n»64L2 
IF(L2.LE.O)   L2=l 
MCS2 
IF(XP{I,J».LT.X(I,J-1))   GO   TC   370 
WRITE(6,490)    IR,JtXP(I,J) 
XX(Itin«XP(I,J) 
YA=Y(IfJ-l)-YlIX,P-l) 
VB«Y(IX,P)-Y(IX,P-n 
YC=YPM-Y(IX,P-1) 
XA«X(IX,P)-X(IXfP-l) 
XB=X(I,J-1)-X(lXfP-l) 
XC-XP(I,J)-MIX,P-1) 
OEN=XA»YA-YIL?»XB 

OFXT=((THETAlXtPJ-THETAtlXfP-l))»YA-YB*(THETA(IfJ-l)-THETA(IX, 
I     P-1)))/0EN 

DFXH=((AH(IX,P)-AH(IX,P-1))«YA-YB«(AH(I,J-1)-AH(IX.P-1)))/CEN 
DFXV=nV   (IX,P)-V   {IX,P-1))»YA-YB«(V   (I,J-1)-V   ( IX,P-1) ) )/DEN 
DFXS=((S   (IX,P)-S   {IX,P-l))»YA-YB»(S   (I,J-l)-S   (IX.P-D))/0EN 
DFYT=(XA»(THETA(IfJ-1)-THETA(IX,P-1))-XB«(THETA(IX,P)-ThETA 

1   <IX,P-1)) )/CEN 
DFYH=(XA*(AH(I,J-l)-AH(IXfP-l))-XB«(AH(IX,P)-AH(IX,P-1)))/CEN 
DFYV=(XA»IV   (I,J-1)-V   (IX,P-1))-X8»(V   (IX,P)-V   (IX,P-1)))/DEN 
DFYS=(XA»(S   (I,J-1)-S   {IX,P-1))-XB»(S   (IX,P)-S   (IX,P-1)) )/CEN 
THETA(IX,P)sTHETA(IX,P-l)+OFXT»XC+DFYT»YC 
V(IX,P)=V(IX,P-1)+DFXV»XC+DFYV«YC 
S(IX,P)=S(IX,P-1)+DFXS«XC+DFYS*YC 
AH(IX,P)=AH(IX,P-1)<-DFXH«XC + CFYH»YC 
AM(IX   ,P)«SCRT(2./(GAM-1.))#S0RT(V(IX   ,P )*«2/(l.-V(IX   ,P)«»2)) 
YA=Y(I,J)-Y(I,J-1) 
YB=Y(IX,P-1)-Y(I,J-1) 
YC=YPM-Y(I,J-1) 
XA«X(IX,P-l)-X(I,J-l) 
XB=X{I,J)-X(I,J-1) 
XC=XP(I,J)-X(I,J-1) 
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ÜEN=XA*YA-YB«XB 
DFXT = ( (THETA(IX,P-1)-THETA(I,J-1))«YA-(THETA(I,J)-THETA( I,J-»U )• 

1 YB)/C6N 
nFXV=((V (IX,P-1)-V (I,J-1))«YA-(V (I,J)-V ( I,J-l))»YB)/CEN 
ÜFXS = '(S (IX,P-1)-S (I ,J-l) )«YA-(S (I,J)-S ( I,J-n)»YB)/CEN 
DFXh--. ( (AH(IX,P-1)-AH( I,J-l) ) «YA-( Ah ( I , J )-AH l I , J-l) ) «YB )/CEN 
DFYT={XA»(7HFTA(I,J»TTHETA(I,J-1))-{THETA(lX,P-l)-THETA(ItJ-l))«XB 

1 )/DEN 
DFYV=<XA#IV {I,J)-V (I,J-1))-(V (IX,P-1)-V (I♦J-1 ) )»XE)/CEN 
ÜFYS=(XA»(S (I,J)-S (I,J-l))-(S (IXfP-l)-S (ItJ-1))»XE)/CEN 
DFYH=(XAMAH{I,J)-AH( I , J-1) ) - ( AH( IX , P-l )-AH » I t J-l) ) «XB )/CEN 
THETAd , J)=THETA( I , J-l )+CFXT«XC + CFYT«YC 
V    II,J)=V    (I,J-1)+DFXV«XC+CFYV»YC 
S    (I,J)=S    (I,J-1)+CFXS«XC+CFYS»YC 
AH   (I,J) = AH   ( I.J-D+HFXH^XC + CFYH^YC 
IF(V( I,J),GT.l.) GC TO 4AO 
AM(I,J) = S0«T12./(GAM-1.))»SQRTIV{I,J)«»2/(1.-V( 1, J)»#2)) 

281   Y(I,J)=YPy 
X(I,J)=XP(IfJ) 
PM(I,J) = (Y(I,J)-Y(ItJ-U )/mi,JJ-X( I,J-l) ) 
GP=GAM+1. 
GM=(GAM-l.)/2. 
ÄM2=AM(IX,P)»»2 
DL*'). 
IFUMII ,J)*«2-l..LT.O. ) ÄM(I,J) = 1.2 

290   ANS= GM/(GAM»AM2)+GP/(2.»GAMAP2)»((1.4GM^2)/ 
1 (l. + GM»AM|I,J)»»2) )*»(GAM/(GAM-l.))«U.-(GAM«AP(I,J)««2)/ 
1 SQKT(AM(I,J)•♦?-!.)»DL+DL«*2«GAM«AK(I,J)»»2»(GP«AK(I,J)««^-A.«(AM 
1 (I,J)**2-1.))/((AN(I,J)»*2-l.)«*2»A.))»EXP(S(IX,P)-S(I,J)) 

IF(ANS.LT.ü.) GO TC 430 
EPi( I.J) = ARSIN(SCRT(ANS))♦THETAIIXfP) 

33    ABC=ABS((S(I,J)/S(IX,P)-l.)»100.» 
305   IF(ABC.LT.YT) GO TO 410 

GO TC 370 
31.  GO TO (320,330, KA 
32ü  IFIX( I.JJ.GT.ALP) GO TO 36C 
33    CONTINUE 

IF((NU(IX)-l).GT.N) GO TO 47C 
DO 340IJ=1,II 

34j   XXn,IJ) = lO.E+10 
NPT = 0 
IFiMC.GT.:) CALL SHOCK 
IF(NPT.EO.l) GC TC 10 

IF(M.GT.C) GC TC 35C 
IF(MN.GT.O) GO TO 350 
CALL CSHCCK 

35.  RETURN 
360  KA=^ 
37j  N=J 
iac     y=i 

N!AXN = N 
LI = I 1-1 
DO   3a5IJ=l,Ll 

38 5        XX(I,IJ)=10.E+lO 
GC   TC)      351 

39-)        AM(I,J) = |AM{ I-l,J)+AM( I-1,J+1) )/2. 
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480 
490 
500 

1 510 
■ 520 

530 

GO TO 200 
400   N»J-1 

GO TO 380 
410   MC=0 

WRITE(6,500) ABC 
G0=1. 
GO TO 310 

420   IF(IR.LE.KK) GO TO 400 
WRITE(6,530) IRfJ 
GO TO 400 

430   EPI(I,J)=THETA(I-lf J-H) 
GO TO 3C0 

440   AM(I,J)«(AM(IX,P-1)♦AM(I X,P))/2. 
GO TO 280 

450   UX«U(AM(I,J-1) ) 
UW»U(AM(IX,P)) 
AX»A(UX,V(ItJ-l)) 
AW»A(UM,V(IX,P)) 
BX = BUAM,UXfTHETAll,J-l),Y(I,J-l)) 
ANX»AN(UX,THETA(I,J-1)) 
CW«C(UXtGAMfRS) 
SMAX«SMA(UW,THETA(IXtP)» 
CX»C(UW,GAM,RSI 
DW=D(JAM,UWtTHETAUX,P),V(IX,P)) 
ZM«Z(UWtTHETA( IX,P)) 
TX«T(UX,THETA(I,J-1)> 
ViX«TAN(THETA(I,J-l)+UX) 
HX=TAN(THETAnx,P)-UW) 
GO TO 180 

460   AZ=AX 
AY = AW 
BZ = BX 
CY=CW 
CZ = CX 
DY=DW 
ZZ = ZW 
TZ = TX 
GZ = GX 
HZ=HX 
GO TO 230 

470   LIM=LIM+1 
J=L1M 
N=N+1 
MAXN«N 
60 TO 10 
FORMAT(10X?4HYPM(.I3.1H,I3,lH)fE20.8) 
FORMAT(10X«4HXPM(,I3tlHtI3,lH)tE20.8) 
FORMAT(20X,E18.8) 
F0RMAT{5X,4I10) 
FORMAT (lXf13E10.A) *"'""" 
F0RMAT(1X,29HWE HAVE NOT CONVERGED FOR ROW,I5,5HP0INTf I 5 ) 

END 
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SUBROUTINE CJHCCK 
CCfMQN v' ( 5 , 70 ) , THF T A ( b , 70 ) »AN ( 5 , 70 ) , S ( 5 , 70 ), X ( 5 , 7C ) , Y ( 5 , 7C ) , M ( 5 ) 

1 , E PI ( 5 , 7r') , Ah ( 5 , 7C J , PM ( 5, 7 J ), LOC ( 5 ) , XP ( 5 , 7':) , XX (•:, 1 5C ) , 
1 GAM,RSf AM.N.I ,Jt(»/'»JAM,ALPtTeETtNP,KÄtfAXNfMN,yCtII

,',NPTfLFSl-t 
I LLfTL,Pl,PMl,YT,ICEL, IRECiKKfAL,AAteA,C<.,CA,EAfF<i,IR 
J = N 

299   UX = U(ÄK(I,J-1) ) 
AX = A(ÜX,VIItJ-1) ) 
BX=B(JAM»UX,THeTA(I,J-l) ,Y(I,J-1)) 
CX=C(UXtGA^,RS) 
GX=TAN(ThETA(I,J-l)+LX) 
FX = TAN(EP[(I-l,J-l) ) 

GMl=GAK-l. 
AMIS = AM»»2 
GM=GM1/2.»AMIS 
GP1=GAM+1 
BET = EPni-ltJ-l)-THETA(I-l,J-l) 
SA=-V(I-1,J-1)»SIN(BET)»CCS(EET)«(HX/TAN(BET)+TAN(DET)/FX- 

1 (2.»GM1)/GP1J 
COM=(ANI»SIN(EPI(1-1,J-l)))««2 
CO^S=(CC^-l.)*«2 
SB = -SIN(2.*ThETA(I-l,J-l) )/S IN( 2 .«EP 1 ( 1-1, J-1) ) + ( (GP^AI11 ««2 

1 •COM*SIN(THcTÄ(I-1,J-1))««?)/CCWS) 
SC=RS/FX#CONS/((CCy-(GMl/(2.«GAM)))•(COy«{Gf1/2.)+l.)) 

L = 0 
310  L=L+1 

FG=FX-GX 
X( I,J) = (Y{I,J-l)-YII-l,J-l) + FX»xn-lf J-1)-GX «Xd, J-1))/FG 
Y(I,J)=(FX»GX»(XII-1,J-1)-XII,J-1))+FX*Y(I,J-l)-GX«Y(I-lfJ-l))/FG 
DELX=X(I,J)-X{I,J-1) 
EPKI,J)=EPI{I-l,J-l)+(AX«(V(I,J-1»-V(I-1,J-1))-TFETA(I.J-1)+ 

1 THETA(I-l,J-l)+CX»(S(I,J-l)-S(I-ltJ-l))+BX»DELX)/(SA»AX-Se+SC«CX) 
SEP=SIN(EPI(I,J)) 
EM = AMS»SEP*»2 

THETA(I,J)=ATAN((ÖKIS»SIN I 2.»EPI(I,J))-2.«CCS(EPI(I,J))/SEF)/ 
l(2.+AMS«(GAy + GCS(2.»EPni,J) ) ) ) » 

VT = l.-( (4,»(Ey-l. )»(GA^»E^ + 1.) ) )/(GPl««2«AMS«EM) 
IF(VT.LT.G.) GC TC 3CD 
V(I,J)=S0RT(GM/(1.+GK))»SCRT(VT) 
IF((2.»GAV*EN).LT.GM1) GO TC 300 

S(I.J)=RS/GM*ALÜG( I 2 .♦GAMEl^-GMl )/GPl )-GAM»RS/GN 1» 
lAL0G(GPl*EV/(GMl«tK+2.)) 
AH(I,J)=AH(I-1,J-1) 
IF(V(I,J).GT.l.) GC TO 310 

AM(I,J)=SCRT(?./G»'l)»SOPT(V(I,J)««2/(l.-V{I,J)«*2)) 
IFd.EC.l) GC TO 340 
IF(S(I,J).LE.0.O.CR.X(I,J).LE.O.C) GC TC 3C0 
IF(Af(I,J).LT.l.) GO TG 3C" 

320   IF(Y(I,J) .LT.^..GR.Y(I ,J).LT.TBET) GC TO 3r.O 
PM(I,J)=(Y{I,J)-Y(I,J-l))/IX(I?J)-X(I,J-l)) 

IF(X( I,J).GT,ALP) GC TO 330 
RETURN 

330 M=l 
MAXN=\ 
RETURN 
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300   N*J-1 
GO TC 330 

340   AZ*AX 
bZ*BX 
CZ=CX 
GZ*GX 
FZ = FX 

350   UX«U(AM(I,J)) 
AX«.5»(AZ + A(IX,V(I,J)) ) 
BX«.5MBZ + B(JA^,UX,THETA(I,J),Y(i,J))) 
CX*.5«(CZfrC(lX,GAKtRS)) 
FX».5*(FZ+TAN(6PI(I,J))) 
GX=.5«(GZ+TA\(THETA(I J)+UX)) 

"GO TO 310 
END 
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JWfWfr 

110 

180 

115 

130 

1 

SUBROUl 
CONMGN 
.EPI(5, 
GAM.RSf 
LL,TL,P 

J = l 
UX=U(AM 
AX=A(UX 
CX=C(UX 
DX=0(JA 
HX=TAN( 
EX=TAN( 
N=N-NP+ 

M=l 
NP = 2 

GM--GAM- 
L=0 
L = L+l 
S(I,1)=S 

AH(I,1) 
DEN=EX- 
X1 = X(I , 
X(I,1)= 
DELX=X( 
Y(I,1)= 
XQ=X(I, 

AW(I,IJ= 
))»»(GM 
V(I,1)= 
T1=THET 
THETAd 

2))+DX 
(V(I-1, 

EPKI.l) 
IF(A&S( 

THETA( 
IFd.GT 
IF(L.NE 
AZ = AX 
CZ=CX 
DZ = DX 
HZ^HX 
EZ = EX 
UX=UIAM 
AX=.5»( 
CX=.5*( 
DX=.5»( 
HX=.5*( 
EX=,5«( 

GO TO 11 
WRITE16 
IF(Yl I» 

iFdM.eo. 
RETURN 
WRITE(6» 
WRirE(6, 

I ME CIV ST 
V(5,7O),THETA(5,70),Af(5,7C)»S(5f7O),X(5,7C),Y(5,7C)»M{5) 
7C) , AH ( 5 , 7 -|) , PM ( 5 ,70 ) , LOC I 5 ) , XP ( 517C ) i X X ( 5 ,15C ) t 
Ayi.N.ItJ.y.JAM.ALPtTEET.NPtKA^AXN.MN.NCIftNPT.LFSh, 
I,E^lfYT,I0EL,lKED,KK,AL»AA,RA,CA,DAfEA,F4,IR 

(1-1,2)) 
,V(I-1,?)) 
.GAM.RS) 
y,UX,THETA(1-1,2)fY(1-1,2)) 
THETA(I-1,2)-UX) 
TH5TA(I-1,1)) 

(1-1,1) 
=AH(I-1,1) 
HX 
1) 
IY(I-1,2)-Y(1-1,1)+5X*X(I-l,l)-hX«X(1-1,2))/CEN 
I,l)-X( 1-1,2) 
(EX*HX»(X(I-1,1)-X(1-1,2))+EX«Y(I-l,2)-HX«Y(I-l,l))/DEN 
1) 
SQRT(2./GM»((EMl««2*Gy/2. + l. ) * ( ( P1/P2 ( XC , AA, BA,C^ ,C^ ,E<i ,F^ 
/GAM))-!.)) 
SQRT(AM( I,l)»»2/{2./GV + AM(I,l)««2)) 
A(I,1) 
,l)=THETA(I-l,2)-ÄX«(V(I,l)*SCRT(AH(I,l)/AH(I-l,2))-V(I-l, 
• DELX-CX»(S(I-1,1)-S(1-1,2) )+AX«(AH{1,1)-AH(1-1,2) )/ 
2)*(Ah( I,l)+AH(1-1,2))) 
= '*> 

(X1-X(I ,1) )/X(I,l) ),LT.,GC01.ANC.ABS{ (Tl-ThETAd, 1))/ 
1,1) ).LT..CC;'l) GO TO 12C 
.50) GO TO 115 
.1) GC TO iflr. 

( 1,1) ) 
AZ+A(LX,V(I,1))) 
CZ+C(LX,GAy,RS)) 
DZ*D(JAN,UX,THETA(I,1),Y(1,1))) 
HZ+TaN(THETA(1,1)-LX)) 
E7+TANITHETA(1,1))) 

, 16 j ) 
1).LT.O..OR.Y(1,1).LT 
1) GO TO 13' 

TBET) GC TC 130 

140) I 
15J)V(I,J),ThETA(I,J),AM(I,J),S(T,J),X(I,J),Y(I,J)f 
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140 
liC 
160 

IAH (I,J) 
N = l 
RETURN 

F0R^AT{///8H   ROW  tI2,l5H     TEST  STOP///) 
FORMAT(7E18.8) 
FORMAT(40XfA0HKE HAVE NOT COKVERGEC ON TJ-E FIRST POINT) 

END 
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APPENDIX   B 

PROGRAM FOR VISCOUS REGION 

Once the subsonic portion of the boundary layer is  subdivided 

into n strips,   the flow in each strip is assumed to be governed by the one- 

dimensional equations with friction and heat transfer.      The resulting system 

of equations consist of   "in" nonlinear,   ordinary differential equations. 

These equations are connected through the boundary conditions on heat 

transfer,   q,   and friction,   cf (Fig.   6).      Once the starting conditions, 

pressure distribution,   and shape of basic streamline are known,   the 

equations are solved simultaneously by the Runge-Kutta method. 

At every station station x it is therefore possible to find an area 

consistent with the flow conditions in each stream tube in the flow field. 

Since the basic streamline and the area for the viscous layer are now 

known,   the location of the Dividing Streamline can be obtained.      The point 

at which the Dividing Streamline intersects the axis is the location of the 

rear stagnation point. 

Downstream of the »ear stagnation region the inviscid characteristic 

and viscous layer analyses must be such that the basic streanruine is located 

at radial location where the outer streamline of the viscous layer exacdy 

coincides with the inner streamline of the inviscid flow field.      If at any 

x     station this condition is not satisfied, then the assumed pressure along 

the basic streamline is changed until the above condition is satisfied. 

For details of the viscous layer program,  one may consult the flow 

chart (Fig.  B-l) and the program. 
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SUBROUTINE     VISCOUS 

^READ; 
NO. OF STRIPS, 

Pt.Ax xMAX 

/READ: 
TEMP OF RECIRCJ 

REGION 
VALUES ALONG 
B.S. 

/READ. 
(FOR   EACH 
STRIP) HtÄ%H 
AT X«XÄ 

INTEGRATE 
EOS.  TO   X« 
X0+AX BY 
RUNGE-KUTTA 

WRITE : 
MrA.H 

LET 
x0.x 

YES1 

FIG.(B-I)   VISCOUS    PROGRAM 
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COMPUTER PROGRAM FOR SHEAR LAYER 

11 

HI 

SUBKUUTINE RK(X) 
DIMENSION S(20),F(20)f H(20)» P< 20)»U(20)♦A{50),R(10 i),R(22).SH(21) 

1 tDN(2)),Q(21),RX(20)tXR(20),TX(20),AH(80),AS(80),AF(80 ) ,C(20 ) , 
2 CF(20),FF(20),HF(2D),V(20),CCF(20) 

DHX1(H,F,C)=-DX»((AME*S0RT(H)«6.2831853)*PE/(S0RT(F)»PF*C)*{GHF» 
1    SF-0LF«RF)) 
DCX(H,F,C)=DX»(C»({l.-F)»UF/(GAM«PF»F)+(HX/H)»(l,+GMn»F) 

1 ♦((l.+GM»F)»CFT   /ABS{SF-RF)) ) ) 
DFX(H,F,C)=DX»(-F»(1.+GMD»F)»(2.*UF/(GAM»PF»F)+HX/H+CFT»?./ABS(SF 

1 -RF)) ) 
NO 

AME.RELtALP,GAM,PEtTH 
DXtAXX,EltE2 
VL,SH0,V0 

REA0(5,150) 
READ(5,170) 
READ(5,155) 
READ(5,155) 
Z»0. 
NQD=N0/3 
READ(5,170) 
READ(5,170) 
READ(5,170) 
READ(5,150) 
IF(IY.NE.O) 
WRITE{6j270) 
REA0(5,150) 
LIMx5»NQ0 
IF(SAME.NE.O.) 
LIM = 5 
NX»1 
READ(5,170) 
LI   =2»LIM 
REAI)(5,170) 
READ(5,150) 
READ(5,170) 
WRITE(6,250) 

(C ( I) , 
(F { I ) , 
(H(I), 
IY 
GO   TO 

1=1,NQD) 
1=1,NOD) 
1=1,NOD) 

U7 

SAME 

GO   TO   7 

(A(I),.I = 1,LIM) 

(6(1),1=1,LI    ) 
IXR 
(XR(n,RX(I),TX(I),I = l,lXR) 
E1,E2 

WRITE(6,2 55)A(1),B(1),B(2),B(2) 
WRITE(6,260)    (A(I-1),A(I),B(2»I-1),8{2«I),BI2»I),I=2,LIM) 
WRITE(6,265)    (XR(I),RX(I),TX(I),1=I,IXR) 
NQDP=NQD-H 
N0DM=N0D-l 
NW«N00»4 
NX=NQD*5 
PH=3.14159265 
PCF=2.«PE»COS(ALP)/SIN(ALP)/REL 
S(N0D)»1. 
CCF(NQD)«0. 
GM=GAM-1. 
GMü=GM/2. 
HN=1.+GMD»AME»*2 
EL=2./(REL»SIN(ALP)*(HN)) 
XM=-1. 
IXF»ö 
AB=COS(   TH) 
DO   111   1=1,IXR 
IF(X.LE.XR(I))   GO   TO   112 
CO" TINUE 
1 = 1X0 
GO   TO   113 
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112 IFU.EQ.XRm.OR.X.LT.XRUn   60  TO   113 
RCl)«RX(I-l» + (RX(I)-RX(I-l))/iXRCn-XR(I-l))»<X-XR(I-l)) 

TTH»TX(I-n + (TXn)-TX(I-in/(XRin-XR(I-ll)*IX-XR(I-l)) 
R(1)-R(1»/C0S(TTH) 
GO  TO   114 

113 R(l)»RXm/COS(TXm) 
TTH«TX(I) 

114 IF(XM.6T.O.)   RI1)»0. 
IFdY.NE.O)   R(1)«0. 
XT«X 
IW»1 
DO  12   1=1,NQO 
CF(I)«C{I) 
FFm-FU) 

12 HF(I)>H(I) 
ZF«Z 
IFCXM.LT.O.)   GO  TO  141 
IFCX.EO.O.)   Z»0. 

25 SH(NQDP)«E1+E2«Z 
DO  TO   I-ltNQD 
IF(HF(I),LT,0.)   RETURN 
IF(FF(I).LT,0.)   RETURN 
SH(n«HN*HFn      )/ll.4GM0«FF<I      )) 
V<n*SQRT(FF(n«SH(n)/AME 
DN(I)»  S(n-R(I) 
IF(IY.NE.O)   SH(NQOP)^SHO 

TO Q( I )«EL»SQRT(SH( 1-1) MISHID-SHf I-in/(ON< I-1)+DNC I)) 
Q(NQDP)»EL*SQRT(SH(NQ0n«t$H(NQDP)-SH(N0Dn/t'DN(NQD)«2.) 
IF(XM.6T.O.)   QCNQOP)^0. 
IFCIY.NE.OI   Q(NQOP)»0«0 
IF(IY.NE.O)   Q(I}«-QII) 
Q(I)»EL»SQRT(SH0)«(SH(l)-SH0)/fDN(l)*2.0) 
IF(IY.NE.O)   0(11-0.0 
IFIIXF.LT.l»   GO  TO  1391 
IF(IM.EQ.3)   60  TO  120 
K-l 
Z«2F40X»C0SITTH) 
L-O 
DO  100   I«1,NX,5 
L«L*1 
IFCZ.LE.AtU)   J^K 
IFCACI     I.LT.Z.AND.Z.LE.Ad^in   J^K«2 
IF(A{I+l).tT.Z.AND.Z.LE.A!I*2»)   J^K*4 
IF(A(I + 2).LT.Z.AN0.Z.LE.A(I*3»)   J-K-Üö 
IF(A(I43).LT.Z.AN0.Z.LE.A(UA))   J^K*8 
P(L)*B(J)^B(J^1I*Z 

95 U(L)«BU+l) 
100       K-K+10 

IFCSAME.NE.O.J   GO  TO   120 
DO  110   I«2»NQD 
P(n»P(l) 

no     um-ud) 
IF(IY.NE.O)   VL»VO 

120       DO  125   I«1,NQDM 
123       CCF(n«PCF»SM(I)»«l.5»(VtH-*V(I+ft)l/(P(I)«VtI)««2*.5«tR(I)-RtI*2) 

1   )) 
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■ 

130 

132 

133 

134 

135 

136 

138 

CCF(N0D)= 
(«(MOD)-R 
I-Ü 
DO 130 J= 
1 = 1 + 1 
CCFO«PCF* 
CFT«+CCF( 
IFd.EU.l 
IFdY.Nt. 
IFdY.NE. 
PF=P{I) 
OHF-Qd + l 
OLF = 0(n 
RF = Rd) 
SF»S(n 
uF=u(n 
IF{FF(n. 
AH(J)«OHX 
HX»AH(J)/ 
AS(J)=OCX 
AF(J)«DF 

CONTINUE 
GO TO (13 
IW«2 
X»XT+DX/2 
IFCXM.GT. 
J«l 
D«2. 
00 134 I« 
CFd)»AS( 
FFd)»AF( 
HF(I)=AH( 
TO-CFd) 
IFdY.NE. 
IF((TC/PH 
S(I)=S0RT 
Rd + l)=S( 
J«J + 4 
GO TO 
IW«3 
J = 2 
GO TO 
IW«4 
X»XT+DX 
IFUM.GT. 
J = 3 
D«l. 
GO TO 133 
J = l 
DO 139 1= 
Cd )=Cd) 
Hd)=H( I) 
F( n=F( I) 
TC«-Cd) 
IFdY.NE. 
RT=TC/PH+ 

PCF»SH(NQD)»»1.5»(V{N0D)-VL)/(P{N0D)*V<N0D)« 
(NODP))) 

lWfNW,4 

SHn**1.5»(VO-Vd))/(P{l)«VO»»2»(R(l)-R(2)      ) ) 
I)-CCFd-l). 
)   CFT=+CCF(1)-CCF0 
0)   CCF0=0.0 
0)   CFr=-CFT 

LT.O.)   RETURN 
ltHFd),FF(I),CFd)) 
OX 
(HFd),FFd),CFd)) 
X(HF(I),FF<I)fCFd)) 

2,135,136,138),IW 

0.)   Rd)»0. 

l.NQO 
J)/D +C(n 
J)/D ♦Fd) 
J)/0   fHd ) 

0)   TC«CFd) 
♦ Rd)»»2).LT.O.)   RETURN 
(TC/PH  +Rd )»»2) 
I) 

25 

133 

0.)   R(1)=0. 

1,N0D 
+iAS(J)+2.»AS(J+l)+2.«AS(J+2)+AS(J+3))/6. 
+ (AH( J) + 2.»AH(J'»-l) + 2.*AH(.' + 2)+AH(J + 3) )/6. 
+ (AF( J)+2.»AF(J+1) + 2.»AF(-N2) + AF( J + 3) )/6. 

J)   TC^Cd» 
R{I )»«2 
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IF(RT.GE.O,) GO TO 1385 
X=500. 
GO TO 139 

1385  SII)=SQRT(RT) 
R(I*1)»S(I) 

139 J=J+4 
1391  IXF«2 

Xl=X»COSITTH) 
WRITE(6,210) X,Z 
DO 14Ü I=1,NQDP 
IF(F(I).LT,0.) RETURN 
FS=SORT(F(I)) 
WRITE(6,180) C(I),H(I),SH(I),Q(I)fFS ,CCF(I)»R(I) 

140 CONTINUE 
IF(Z.LT.AXX) GO TO 11 
RETURN 

141 00 142 I=lfNQD 
TC=-C(I) 
IF(IY.NE.O) TOCd) 
ZT=TC/PH+R(n»»2 
IF(ZT.LT.O.) GO TO 143 
Sm=SORT(ZT) 

142 R(I + l) = S(n 
GO TO 25 

143 XM=1. 
AB«l. 
DO 144 1=1,NOD 
S(I)«S(I)«COS(TTH) 
R(i^i)«scn 

144 C(I)=PH*(S(I)»*2-R(I)»*2) 
GO TO 11 

147 WRITE(6f275) 
GO TO 5 

150 FORMATd?) 
155 F0RMAT(5E15.8) 
170 F0RMAT(6E13.6) 
180 F0RMAT(3X,7E18.8) 
210 FORMAT(///,2Xf2HX=f2E15.8,/12X,lHCfl7XtlHH,16X,2HSH,l7X,lhQ,16Xf 

1 3HS0F,16X,2HCF,16X,1HR) 
250 FORMAT(    10X,2HH-,E15.8,1H*,E15.8»2H»X,//) 
255 FORMAT{26X,8HIF Z LE »E13.6,5H   P=,E13.6,lH+,E13.6k9H»Z AND L=v 

1 E13.6) 
260 F0RMAT(5X,2HIF,E13.6rl4HLT Z AND Z LE ,E13.6,5H   P*,E13.6,1H+, 

I E13.6f9H»Z AND U=,E13.6) 
265 FORMAT(///,21X,lHXf19X,IHR,17X,5HTHETA,/,(10X,3E20.8)) 
270 FORMAT(lHl,25X,72HWt ARE WORKING FROM TRAILING EDGE OF CCNE tX^O) 

1 TO REAR STAGNATION POINT,///) 
275 FORMAT!lHlf35X,   56HWE ARE WORKING DOWNSTREAM OF REAR STAGNATION 

• 1 POINT (X=0),///) 
END 
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